Регулятор напряжения 12 вольт
Регулятор напряжения 12 вольт
Стабильность напряжения – это весьма важная характеристика электропитания для большинства электронных устройств. В них содержатся электрические цепи с нелинейными элементами. Для оптимальной настройки этих цепей существует определенная величина разности потенциалов. И если она будет изменяться, электрическая цепь утратит правильные эксплуатационные характеристики. Поскольку напряжение 12 вольт является стандартом не только для автомобилей, но и для многих других устройств, далее пойдет речь именно о таких регуляторах.
Особенности регулировки
Речь о том или ином регуляторе 12 вольт имеет смысл вести только при указании дополнительных данных:
- постоянное или переменное напряжение надо регулировать;
- какова максимальная величина тока в нагрузке;
- величина разности потенциалов перед регулятором;
- параметры напряжения на нагрузке в диапазоне регулирования.
Каждый из перечисленных параметров связан с определенными техническими решениями, которые отражаются в схеме. Общая схема регулятора – это нагрузка, которая соединена с некоторым устройством. Оно условно обозначено прямоугольником на схеме, показанной далее. Внутри этого прямоугольника может быть та или иная схема, которая соответствует дополнительным данным, упомянутым выше. Простейшим регулятором является переменный резистор. Он позволяет без искажений регулировать переменное напряжение. Также такой резистор применим и при постоянном токе.
Схема с переменным резистором.
Элементарная схема регулятора
Схема с переменным резистором
Если разность потенциалов на входе значительно больше 12 вольт на выходе, в регуляторе будет теряться энергия. На переменном резисторе будет выделяться тепло. Чтобы избежать потерь тепла, на переменном токе надо применить переменную индуктивность, которой может стать ЛАТР. Его пропускная способность ограничивается, как и в переменном резисторе, конструкцией подвижного контакта. Но если допустимо переключение путем переставления между витками перемычки с надежными контактами, можно получать значительную силу тока.
Индуктивный регулятор
Другим способом регулирования своими руками переменного напряжения 12 вольт может быть изменение индуктивности регулятора. Для этого вручную изменяется либо зазор, либо число витков, специально предназначенных для этого. По такому принципу устроен регулируемый сварочный трансформатор, используемый для электропитания вольтовой дуги. Если регулятор напряжения 12 вольт не обладает свойствами стабилизатора и управляется своими руками, разность потенциалов на нагрузке необходимо контролировать вольтметром.
Переменный резистор и переменная индуктивность могут быть использованы и как регулятор тока. В этом случае необходимо контролировать ток в нагрузке амперметром. Если параметры напряжения на нагрузке не оговорены, за исключением его величины в 12 В, регулировать можно диммером. Это может быть мощный регулятор, поскольку он обычно выполнен на основе тиристора. А современные тиристоры выпускаются для очень широкого диапазона разности потенциалов и тока.
Регулирование со стабилизацией
Для получения заданных параметров напряжения или тока нагрузки применяются стабилизаторы. В них выходное напряжение или ток сравниваются с эталонным значением, и при минимальном заданном изменении выполняется автоматическая компенсация регулятора управлением соответствующего полупроводникового прибора. Существует огромное количество разнообразных схем различных стабилизаторов. Наиболее простыми в использовании являются интегральные микросхемы.
Внешний вид и схема подключения микросхемы – стабилизатора 12 В
Такие готовые стабилизаторы очень удобны для питания светодиодов как в автомобилях, так и в системах освещения. При питании от сети 220 вольт необходим понижающий трансформатор с выпрямителем, подключаемый к входу. Поскольку во многих случаях параметры нагрузки весьма специфичны, делаются специальные стабилизаторы напряжения и тока. Они могут работать как в непрерывном, так и в импульсном режиме. Но это уже совсем другая история…
Все своими руками
Здравствуйте. Сегодня ради спортивного интереса попробовал одну схему зарядного устройства с применением реле регулятора от автомобиля. Схема действительно рабочая и имеет право жить, но есть одна недоработка в схеме о которой пойдет дальше речь
Вот схема зарядного устройства с реле регулятором
Схема довольна известна в интернете и часто ее повторяют, и в этом нет ничего удивительного. Что бы ее собрать не нужно не паяльника, не измерительных приборов, необходимы только парочка проводов с фишками, реле зарядки, реле обычное автомобильное 30А и диодный мост с трансформатором. В качестве источника питания использовать буду регулируемый блок питания переменного тока
Еще до сборки раздумывал как же будет срабатывать ограничение, если нагрузка коммутируется реле, а не полупроводником. По хорошему когда напряжение на АКБ меньше нормы 14,4В, реле должно подавать питание на основное реле и коммутировать ток для зарядки. Когда напряжение подходит к пределу 14,4В, управляющий транзистор закрывается и реле должно отключиться. Но на этом не все, напряжение после отключения упало и соответственно реле регулятор снова включает силовое реле, опять бежит ток, опять напряжение поднялось до нормы и реле отключается. Так происходит стабилизация напряжения, но если посмотреть эти периоды включения-отключения, то этот процес проходит около 100 раз в секунду. Зная что у реле есть механический ресурс, делаю вывод что реле так долго не проживет. Это теория, надо же в практике попробовать.
Собрал все на коленке, а точнее на полу в кухне минут за 20 примерно. Подключил свой экспериментальный AGM аккумулятор, некоторое время заряжалось нормально, а потом этот треск. По началу испугался, звук как будто коротит что то, а оказалось отсекатель начал работать. Этот треск не прекращался и в итоге моя теория была верна, реле не сможет так долго жить. Даже если механические ресурс реле не успеет отработать, то контактная пара явно не выживет из-за постоянной дуги между контактами.
Наверное пора доработать, а именно добавить паралельно контактам реле балластный резистор. Этот резистор выполняет две функции:
— сохраняет контакты реле, так как пусковых токов таких больших уже не будет и дуга загораться не будет;
— снижает частоту включения реле, за счет того, что при размыкании основного реле, часть тока продолжает течь на АКБ и напряжение на нем не так быстро падает.
Установка резистора действительно помогла и теперь реле включается — отключается реже. Для индикации окончания заряда добавит светодиод и резистор паралельно резисторам с балласта
Проблема частично решена, но частота слишком высока. Тогда вот что придумал, на 67 ногу реле добавил конденсатор, что бы сгладить пульсации на силовом реле
Установил в общем конденсатор на 470мкФ 25В и песня запела по новой, теперь реле щелкает 1-2 раза в секунду, что уже не плохой результат. По характеру отсечения, напоминает отсекатели в тиристорных зарядных устройствах, но не думаю, что такой характер отсечения дурно повлияет на аккумулятор
Замеры проводил китайским ваттметром, кстати очень удобная штука для замера емкости, потребляемой мощности, тока и напряжения. Стоит около 600 рублей, вот ссылка на ваттметр со скидкой.
Вот видео, где четко видно доработку самодельного зарядного устройства из реле регулятора
А вот и сама схема зарядки после доработки.
На этом все, рекомендую схему всем у кого нет опыта в сборке электроники, а так же тем, кто уже собрал схему, но не доволен вечной заменой релюшек.
С ув. Эдуард
Ток шуруповерта, измерение.
Тема питания аккумуляторного шуруповерта от сети 220 В частично уже рассматривалась на этом сайте. Было рассказано о том, как подобрать блок питания под конкретную модель аккумуляторного шуруповерта, показаны испытания по закручиванию шурупов. Не были представлены замеры тока, который потребляет шуруповерт в различных режимах работы. Об этом и пойдет речь далее.
Испытывать будем тот же шуруповерт:
Питаться он будет от того же блока питания:
Для начала измеряем ток холостого хода при медленной скорости:
Слева значения тока в Амперах, справа напряжение в Вольтах.
Затем ток холостого хода на быстрой скорости:
Теперь измеряем ток при максимальной нагрузке, когда срабатывает трещетка:
На фото установившееся значение, хотя кратковременные броски немного превышали 6А. Защита блока питания не срабатывала. Сказывалось сопротивление проводов которыми шуруповерт соединен с блоком питания (около 2м).
При повороте регулятора вращающего момента до максимума и максимальной нагрузке, когда трещетка уже не срабатывает, двигатель останавливается, ток достигает почти 10 А и отключается блок питания. Это недопустимый режим работы.
Но, остановленный двигатель для блока питания, это практически короткое замыкание. Как известно, ток короткого замыкания остановленного двигателя определяется чисто омическим сопротивлением обмотки и может достигать очень больших значений, пока не сработает защита блока питания. Если блок питания мощный и его защита срабатывает на токах 20-30 А, то сгорит провод обмотки двигателя. Как было указано в предыдущей статье максимальный ток двигателя этой модели шуруповерта 4 А, диаметр провода его обмотки около 0,5мм.
Ток 10 А это уже более чем в два раза выше допустимого, не говоря о токах 20-30 А.
Вывод тот же, нет смысла в блоках питания на 20-30 А для питания шуруповертов у которых двигатель рассчитан на максимальный ток 4А. Нельзя эксплуатировать шуруповерт нагружая его до остановки двигателя отключив трещетку.
Если двигатель у шуруповерта другой, большей мощности, на большие токи — то под него и нужно подбирать блок питания.
Материал статьи продублирован на видео:
Регулируемый стабилизатор напряжения с регулируемым ограничением выходного тока
Простенькая относительно схемка, со средними параметрами, на основe транзисторoв с большим усилением. Была сделана для своих нужд в качестве лабораторного.
Часто приходилось заниматься ремонтом или запуском разных схем, для которых нужно было просто иметь чем их питать 3V, 5V, 6V, 9V, 12V. И каждый раз искал что-нибудь подходящее. В ход шли блоки питания от калькуляторов, магнитофонов, аккумуляторы, батарейки. Иногда радовался, что соответствующий источник не давал больших токов, таким образом спасая меня от лишних трат. Конечно делал одно- двух-транзисторные стабилизаторы для решения этой проблемы, но резульнаты не удовлетворяли. Где-то на второй волне вдохновения родилось то, с чем хочу поделится.
Применяется до сих пор при ремонте и запуске устройств, если подходит выходное напряжение конечно. А также при не совсем обычном применении – проверка стабилитронов, зарядка пальчиковых аккумуляторов, просто как источник стабильного тока. В таких случаях крайне удобно наличие хотя бы вольтметра на выходе.
Содержание / Contents
↑ Схема
Устройство разрабатывалось для выходного напряжения 1. 12V и регулирования выходного тока в пределах 0,15. 3А. Конечно для хороших результатов поставил транзисторы с усилением более 500 (сняты с платы МЦ-31 телевизора 3усцт), а составной регулирующий – около 10 000 (если измеритель не врёт – взял из модуля СКР телевизора 2усцт, коррекция растра).
Важно наверно, что питал схему от автомобильного аккумулятора, когда снимал данные.
Далее поставил трансформатор и некоторые чудеса, типа 3А при 12V, стали невозможными. Падало напряжение на выходе выпрямителя. Кому ещё интересно – ближе к схеме.
Схема стабилизатора напряжения с регулируемым ограничением выходного тока
Итак, на Х1 подаётся минус источникa напряжения, а с Х2 берётся стабилизированное и ограниченное в выходном токе напряжение. Если вкратце, то VТ3 – регулирующий, VТ4 – компаратор и усилитель сигнала ошибки стабилизатора напряжения, VТ1 — компаратор и усилитель сигнала ошибки стабилизатора выходного тока, VТ2 — датчик наличия ограничения выходного тока. За основу был взят распространённый вариант стабилизатора напряжения.
Исходная схема с фиксированным напряжением и защитой по току
Она слегка изменена, чтобы можно было менять в возможно бОльших пределах выходное напряжение, и убрать блокирование стабилизатора. Добавлен R8, чтобы сделать возможным работу схемы ограничения выходного тока на VТ1. Добавлен R7 и VD3 для установки пределов изменения выходного напряжения. Конденсаторы С1 и С2 помогут уменьшить пульсации на выходе.
Теперь позвольте мне пройтись с объяснениями по второму кругу (cм. первую схему). При появлении на входе Х1 относительно общего провода отрицательного постоянного напряжения в пределах 9. 15V, появится ток в цепи R2-VD2-R6-VD1. На стабилитроне VD1 появится стабильное напряжение. Часть этого напряжения подаётся на базу VТ4, который в результате откроется. Его ток коллектора откроет VТ3. Ток коллектора VТ3 зарядит С2, а через делитель R9, R10 часть напряжения С2 (оно же выходное) поступит на эмитер VТ4. Этот факт не позволит выходному напряжению расти больше чем удвоенное (Uбазы VT4 — 0,6V). Удвоенное потому, что делитель R9, R10 на два. Так как на базе VT4 напряжение стабильно, выходное тоже будет стабильным. Это есть рабочий режим. Транзисторы VТ1, VТ2 закрыты и никак не влияют.
Подсоединим нагрузку. Появится ток нагрузки. Он потечёт по цепи R2, Э-К VТ3 и дальше в нагрузку. R2 здесь работает датчиком тока. Пропорционально току на нём появляется напряжение. Это напряжение суммируется с частью напряжения, взятого с помощью R5 от VD2 и прилагается к базовому переходу VТ1 (R3 – чисто для ограничения тока базы VТ1 при бросках и защиты таким образом VТ1) и когда оно становится достаточным для открытия VТ1, устройство входит в режим ограничения выходного тока. Часть тока коллектора VТ4, который раньше поступал в базу VТ3, сейчас уходит через переход база-эмитер VТ2 в коллектор VТ1.
Благодаря большому коэффициенту усиления транзисторов, напряжение база-эмитер VТ1 будет поддерживаться около 0,6V. Это значит, что напряжение на R2 будет неизменным, следовательно и ток через него, а дальше через нагрузку тоже. Движком R5 можно выбирать ограничение тока от минимального до почти 3А.
При наличии режима ограничении тока открыт и VТ2, своим током коллектора он зажжёт светодиод HL1. Следует понимать, что ограничение тока «имеет приоритет» перед «стабильностью» выходного напряжения.
На выходе устройства я поставил вольтметр, а вот когда нужно ограничение на определённом токе, просто закорачиваю выход тестером в режиме амперметра и с помощью R5 добиваюсь желаемого.
↑ Детали
Схемка простинькая но всё хорошее основано на большом усилении транзисторов (более 500). А VТ3 вообще составной. Букв на названиях транзисторов нет, но должны все подойти. У меня все «Г». Главное – усиление и малые утечки. В справочнике пишут, что у некоторых букв «Ку» от 200, но мои все имели более 600. Переменники попались группы А. Для VТ3 нужен радиатор. Я поставил какой был и влез в корпус. Максимальную надежность обеспечит лишь радиатор, расчитанный на рассеивание мощности равной Uвходное умножить на 3А, т.е. 30. 50Вт.
Думаю мало кому понадобится 1V на 3А долговременно, поэтому смело можно ставить радиатор в 2. 3 раза меньше.
VD2 и VD3 служат источниками напряжения в 0,6V. Можно использовать и другие кремниевые диоды. R4 – несколько сдвигает порог, когда загорается светодиод. Если он горит, значит вовсю идет ограничение выходного тока. R1 просто ограничивает ток светодиода. Потенциометры можно и с большим номиналом (в 2. 3 раза). R8 можно уменьшить (где-то до 4к), если у транзистора VТ3 не хватит усиления.
С печатной платой – как обычно в простых схемах, изготавливаемых в единственном экземпляре. Была плата для другого регулируемого стабилизатора напряжения, параметры которого не устраивали. Она была превращена в макетницу и на ней собрана данная схема. Резисторы использованы на 0,25 Вт (можно и 0,125) – не вижу особых требований. При 3А (если Ваш выпрямитель их даст) – заводской проволочный R2 (2 Вт-а) будет на пределе и наверно стоит ставить мощнее (5Вт). Электролиты — К50-16 на 16V.
Eсли нет составного транзистора – «составьте» его из чего есть. Начните с КТ817 + КТ315, с буквами «Б» и дальше. (Если всё же не хватит усиления у VТ3, я бы уменьшил R9 и R10 до 200 Ом и R8 до 2 кОм).
Трансформатор, выпрямитель и конденсатор фильтра – Ваши. Они не менее важны, но я хотел рассказать только о таком более-менее универсальном стабилизаторе. (У меня стоит 10-ватный транс на 10V/1А переменного, откуда-то взятый блочный мостик на 1А, и 4000мкФ/16V электролит фильтра. Стыдно, зато всё влезает в корпус.
Нужно заметить, что стрелочный индикатор (в схеме не указан) с помощию переключателя, можно использовать и как вольтметр и как амперметр. В первом случае видим выходное напряжение, во втором выходной ток.
↑ Итого
Вышерасписанное устройство у меня работает в составе «всё в одном»: развитый (хоть и однополярный) блок питания, частотомер и генератор звуковых частот (синус, квадрат, треугольник). Схемы взяты из журнала «Радио». (Работают не совсем так как хотелось бы. Во-первых потому, что внёс слишком много «несанкционированных» изменений – особенно в элементной базе – поставил что имел.) Конечно имеется возможность работы головки вольтметра в качестве индикатора частоты в частотомере. При пользовании генератором – частотомер показывает частоту. Имеется и выход переменного напряжения 6,3V и 10V , на всякий случай.
Корпус, который виден на фотографии не ахти, чтобы его повторять. И вообще: всё там задумывалось, как зеркальное отражение, но загнул переднюю панель по ошибке не в ту сторону. Я растроился и не стал уже его никак украшать.