Cto-nk.ru

О Автосервисе доступно
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотник для регулировки оборотов электродвигателей, особенности использования и варианты регулировки

Частотник для регулировки оборотов электродвигателей, особенности использования и варианты регулировки

chastotnyj-regulyator-dlya-asinxronnogo-dvigatelya

Регулируемый асинхронный привод широко распространен и популярен так, что фактически заменил собой синхронные электродвигатели и привод постоянного тока.

Варианты регулировки скорости электродвигателя включают несколько существующих способов:

  1. Изменение подачи напряжения;
  2. Переключение обмоток асинхронных двигателей;
  3. Частотная регулировка скорости электродвигателя с помощью изменения токовых величин;
  4. Применение электронного коммутатора.

Во многом это произошло благодаря появлению частотных преобразователей, обеспечивающих энергетические и динамические показатели. Использование частотного регулятора скорости считается самым прогрессивным и востребованным методом, входящим в способы регулировки оборотов вращения асинхронных двигателей.

Основное предназначение, которое выполняет частотный регулятор скорости для асинхронного двигателя основывается на осуществлении питания таким образом, чтобы рабочие характеристики агрегата радикально отличались от обычных параметров, получаемых из сети. При этом напряжение в сети и частота должны остаться неизменными.

Устройство и принцип работы, структура частотного регулятора

Принцип работы частотного регулятора для асинхронного двигателя заключается в питании электродвигателя переменным напряжением с меняющимися по необходимости, параметрами амплитуды и частоты. При этом поддержка соотношения напряжение/частота остаются четко определенными и неизменными. Генерирование переменного напряжения происходит благодаря силовому электронному преобразователю.

chastotnyj-regulyator-dlya-asinxronnogo-dvigatelya

Рис. №1 Принципиальная схема преобразователя частоты.

Принцип работы подразумевает использование широтно-импульсной модуляции. Принцип подразумевает подачу импульсного напряжения на обмотки двигателя с амплитудой равной напряжению, полученному от выпрямителя. Импульсы модулированы по ширине и создают напряжение переменного тока с изменяющейся амплитудой. Наглядным примером могут считаться кривые междуфазного напряжения и тока в одной обмотке двигателя при соединении обмоток треугольником.

chastotnyj-regulyator-dlya-asinxronnogo-dvigatelya

Рис. №2 График напряжения на выходе ШИМ и ток в двигательной обмотке при соединении трехфазного асинхронного двигателя в треугольник.

Основные элементы, которые входят в структуру частотного преобразователя

Частотный преобразователь состоит из следующих компонентов:

  1. Мостовой выпрямитель на 1 или 3 фазы, оборудован конденсатором на выходе, является источником постоянного напряжения.
  2. Мостовой инвертор (IGBT) питается постоянным напряжением с помощью широтно-импульсного метода модуляции, служит для генерации напряжения переменного тока с изменяемой амплитудой и частотой.
  3. Модуль управления, который подает команды проводимости на инвертор. Они зависят от сигналов, подаваемых оператором и сведений о результатах измерений электрических величин (сетевое напряжение, нагрузочный ток двигателя).

Структура частотного регулятора

В настоящее время детально разработаны и широко применяются две основные топологии многоуровневых частотных преобразователей. Это каскадные и преобразователи на базе многоуровневых частотных инверторов напряжения.

chastotnyj-regulyator-dlya-asinxronnogo-dvigatelya

Рис. №3 Структурная схема частотного преобразователя многоуровневого типа высокого напряжения, построенная на базе IGBT-транзисторов с воздушным или водяным охлаждением.

В состав устройства включен многообмоточный трансформатор. К особенностям схемы относится наличие силовых ячеек с последовательным соединением, благодаря чему на выходе устройства получается суммарное высокое напряжение. Подобная схема служит для получения формы выходного напряжения практически приближенной к идеальному синусу. Наличие шунтируемых в момент неисправности ячеек обуславливает высокую надежность схемы.

Как продолжение предыдущей схемы рассмотрим схему преобразователя на базе трансформаторного многоуровневого инвертора напряжения с широтно-импульсной модуляцией с применением IGBT-модулей. Для устройства характерна фиксированная частота ШИМ – 3кГц. В структуру устройства включены система защиты с использованием микропроцессора.

chastotnyj-regulyator-dlya-asinxronnogo-dvigatelya

Рис. 4 Структурная схема преобразователя.

На схеме видно, что все блоки функционально взаимосвязаны. На схеме показано как работает частотный регулятор для асинхронного двигателя, устройство и принцип работы.

В первом блоке находится входной трансформатор, в блоке осуществляется передача электроэнергии от трехфазного высоковольтного источника питания. От многоуровневого трансформатора производится распределение пониженного напряжения в шкаф инвертора на многоуровневый инвертор.

Шкаф инвертора включает в состав многоуровневый трехфазный инвертор, состоящий из ячеек – преобразователей. В каждой находится шестиимпульсный фильтр для выпрямления звена постоянного тока и мостовой инвертор напряжения на IGBT-транзисторах. По схеме происходит выпрямление входного переменного тока, который благодаря инвертору изменяется в переменный ток, обладающий регулируемыми показателями частоты и напряжения.

В шкафу защиты управления находятся микропроцессорный блок, обладающий многофункциональными возможностями и системой питания от ТСН преобразователя, устройство ввода преобразователя и первичные сенсоры, обозначающие режимы работы преобразователя.

Микропроцессор служит для формирования сигналов управления инвертором в зависимости от обозначенного алгоритма работы. Он служит для обработки сведений, собранных с датчиков напряжения и тока. Микропроцессор формирует сигналы для управления защитами и аварийными кнопками управления, корректирует алгоритм управления.

Для передачи сведений и связи используется оптоволоконный кабель. Для бесперебойной работы имеется независимый встроенный источник питания. Редактирование параметров выполняется пультом дистанционного управления.

Читайте так же:
Датчик регулировки фар ксенона

Для надежного отключения и безопасного проведения различного рода работ преобразователь оборудован линейным разъединителем.

chastotnyj-regulyator-dlya-asinxronnogo-dvigatelya

Рис. №5 Обобщенная схема ячейки преобразователя

Источники управляемого переменного напряжения формируют фазу напряжения для выполнения их последовательного соединения. Выходная схема питающей сети асинхронного двигателя происходит по схеме соединения обмоток «Звезда». Напряжение в трехфазном инверторе распределяется по схеме.

chastotnyj-regulyator-dlya-asinxronnogo-dvigatelya

Рис. №6 Схема распределения напряжения в инверторе на три фазы.

Частотные преобразователи для однофазного асинхронного электродвигателя

Использование малогабаритных частотных преобразователей применяется при управлении скоростью вращения однофазных двигателей, применяемых в конструкциях бытовых устройств и для производства технологических процессов. Подробней про регулирование однофазного асинхронного двигателя с помощью частотного преобразователя смотрите здесь.

Частотный регулятор скорости для асинхронного двигателя будет необычайно актуальным в схемах управления такими приборами, как кондиционеры воздуха, холодильные камеры, электрические вентиляторы, насосы, все оборудование с использованием асинхронных электродвигателей.

Особенности использования регуляторов скорости для однофазных электродвигателей

В конструкцию частотного регулятора входит несколько элементов, обеспечивающих эффективность работы устройства, к ним относятся:

  1. Встроенный конвертер интерфейсов RS485 (работает опционно);
  2. Встроенный ПЛК контроллер;
  3. Встроенный ПИД-регулятор (формирует сигнал для управления устройством).

К преимущественным особенностям использования регуляторов скорости относятся инновационные технологии векторного управления. Значительная энергосберегающая эффективность – это функция, которая обеспечивается в автоматическом режиме. Управление регулятором скорости можно выполнять с помощью дистанционного пульта управления, минимальное расстояние для управления 5м.

Важно: в конструкции преобразователя частоты предусмотрена возможность автоматически регулировать выходное напряжение.

Популярные модели регуляторов скорости для однофазного двигателя

Среди многообразия устройств, выполняющих функцию управления электродвигателем, существуют две основные разновидности моделей регуляторов оборотов. Это электронные тиристорные однофазные регуляторы скорости, которые работают за счет плавного изменения напряжения питания. Вторая разновидность моделей регуляторов оборотов – трансформаторный однофазный регулятор скорости. Его работа заключается в изменении положения трехступенчатого кулачкового переключателя, с помощью которого происходит изменение комбинации переключения обмоток.

Частотное управление регулированием скоростью асинхронного электродвигателя в наше время является техническим стандартом. Использование частотного регулятора вытеснило очень многие способы управления. Симметричное и несимметричное управление напряжением и использование добавочных сопротивлений, изменение числа пар полюсов ушли в прошлое.

Промышленная машина шьет слишком быстро – как уменьшить ее скорость

Для тех, кто только начал работать с промышленным шейным оборудованием, скорость может показаться слишком большой. Не успевая за такими темпами, можно сделать неровные швы или вообще травмироваться. Именно поэтому, для начинающих швей стоит понизить скорость промышленной машины, а когда они к ней привыкнут можно настроить ее на максимальный показатель, что уже позволит работать быстро и профессионально. И так, с вопросом, как понизить скорость шитья промышленной швейной машины сталкиваются многие, поэтому особенности этого момента технической настройки стоит рассматривать детальнее.

Немного об устройстве электропривода

Электропривод швейной машины является довольно сложным техническим механизмом, ч которым разобраться новичку будет не так уж и легко. электропривод современной промышленной швейной машины состоит из таких частей, как фрикцион, двигатель электрического типа, устройство электрозащиты и управления, а также система передачи. Количество оборотов швейной машины выставляется с помощью специального регулятора и часто, чисто ошибочно, его делают слишком большим, что делает процесс шитья настоящей проблемой. Для устранения такой неполадки, как слишком высокая скорость, придется вспомнить все навыки механика и разобрать педаль, чтобы провести грамотную регуляцию.

В большинстве промышленных машин используются фрикционные моторы, которые часто могут быть причиной слишком высокой скорости, а если их заменить сервомоторами, то проблема будет решена, а параметры скорости будут регулироваться намного проще и комфортнее. Заменив фрикционный мотор сервомотором, можно получить следующие преимущества:

  • скорость двигателя можно контролировать без проблем;
  • экономия электрической энергии до 90%;
  • такие моторы имеют небольшой вес и устойчивы к быстрому износу, поэтому являются фактически долговечными;
  • моторы оборудованы переключателями для обратного вращения;
  • не требуется дополнительной регулировки, уменьшается уровень шума.

Из этого можно сделать вывод, что банальная замена мотора может решить не только проблемы со скоростью, но и другие дискомфортные вопросы. Такой мотор не обязательно встраиваться в машину, он может выступать и отдельной единицей, что очень практично.

Варианты понижения скорости шитья промышленной машины

Есть несколько вариантов, которые используются мастерами для того, чтобы понижать скорость работы промышленных швейных машин. Среди самых актуальных вариантов, которые используются для решения этой задачи, стоит отметить такие:

  • покупка и установка сервомотора с регуляторами скорости;
  • проведение замены шкива;
  • выбрать для двигателя регулятор скорости и установить его;
  • разобраться с самим устройством двигателя и провести соответственную техническую регулировку.
Читайте так же:
Лачетти регулировка фар по высоте

Конечно же, человек, далекий от технических понятий, с такими задачами вряд ли справляться будет, но если покопаться в инструкции, найти всю информацию о моторе и его функциональности, то можно решить указанную задачу. Наиболее оптимальным вариантом решения этой задачи станет установка сервомотора, который не только скорость позволит регулировать, но и будет работать намного тише, а также служить гораздо дольше. Если же владелец швейной машины хорошо развирается в механике, то он может заменить действующий шкив на более подходящий, что позволит снизить скорость шитья в несколько раз. На регуляцию уйдет некоторое время, но шить можно будет в нормальном темпе.

Схемы подключения и выбор регулятора скорости вращения вентилятора: обзор лучших моделей и их стоимость

Вентилятор очень часто используется во многих бытовых приборах. Чтобы этот аппарат прослужил долго, применяется регулятор скорости вращения вентилятора. Он помогает установить нужную скорость вращения лопастей. Этот прием снижает шум прибора и продлевает срок его службы.

Регулятор скорости вентилятора

Что из себя представляют регуляторы скорости вращения вентилятора?

Регулятор скорости (его еще называют контроллер) помогает снизить обороты, когда это необходимо, либо увеличить их. По существу, он изменяет напряжение, подающееся на устройство. Этот небольшого размера прибор подсоединяется к оборудованию по специальной схеме.

Зачем нужен?

Если вентилятор постоянно работает на максимальной мощности, это уменьшает срок его службы. Прибор быстро изнашивается и ломается.

Функции регулятора скорости вращения:

  • уменьшение износа механизмов,
  • снижение шума,
  • экономия электроэнергии.
Как работает: принцип действия и устройство

Принцип работы регулятора скорости состоит в том, чтобы изменять напряжение и частоту оборотов двигателя. Это влияет на воздухообмен и изменяет мощность воздушного потока.

regulator

Для управления скоростью могут использоваться разные методы:

  1. Изменение напряжения, подающегося на обмотку.
  2. Изменение частоты тока.

Второй метод почти не используется, так как частотные приводы очень дорого стоят, во много раз больше самого вентилятора, и не всегда целесообразно их приобретать. В основном, практикуется первый способ.

princip

Виды регуляторов оборотов

По принципу регулирования скорости различают несколько видов регуляторов:

Симисторный регулятор наиболее распространенный, он может охватывать даже не один, а несколько двигателей. Главное, чтобы величина тока не превышала предельную величину.

Частотные модели могут быть использованы в любых пределах от 0 до 480 В, их применяют для трехфазных двигателей вентиляторов мощностью до 75 кВт.

Трансформаторные регуляторы применяются для более мощных вентиляторов. Они однофазные или трехфазные, позволяют плавно снижать скорость оборотов, могут регулировать несколько вентиляторов.

Схемы подключения регуляторов оборотов вентилятора

Рассмотрим схемы подключения различных регуляторов.

Самым распространенным прибором является симисторный или тиристорный контроллер. Его можно подключить самостоятельно, используя схему. Каждый из тиристоров уменьшает напряжение. Регулировка производится при помощи блока управления. Мощность прибора ограничена, большого напряжения он не выдерживает.

chema

Важные моменты:

  • Двигатель вентилятора должен иметь защиту от перегрева.
  • Нельзя использовать в качестве регуляторов диммеры от осветительных приборов.

Трансформаторный регулятор имеет следующий принцип работы:

На входе — питающее напряжение 220 В. Обмотка имеет несколько ответвлений, к которым подключается нагрузка, и тогда напряжение уменьшается. При понижении напряжения снижается и потребление электроэнергии. С помощью переключателя мотор подключается к нужной части обмотки и тогда напряжение меняется.

Трансформатор с электронным управлением работает по другой схеме. Он имеет транзисторную схему, и, модулируя импульсы, может менять напряжение плавно. Чем короче импульсы и длиннее паузы между ними, тем меньше напряжение.

chema2

Ступенчатый трансформаторный регулятор

В работе этого прибора используется трансформатор. Это обычный трансформатор, только у него одна обмотка и от части витков есть отводы.

Управление регулятора осуществляется путем ступенчатого изменения напряжения. На низких скоростях уровень шума понижен.

Обычно используется пять ступеней напряжения, то есть вентилятор будет иметь пять скоростей вращения. Такой регулятор можно использовать и для реверсивных вентиляторов, и для нескольких аппаратов одновременно. Максимальная мощность вентилятора должна быть не более 80 Вт.

Автотрансформатор с электронным управлением

Эти модели относятся к разряду наиболее надежных и мощных. По цене это наиболее дорогой прибор. Он имеет небольшие габариты и вес.

Работает такой регулятор по принципу широтно-импульсной модуляции. Изменения импульсов и пауз между ними дает изменение напряжения и, соответственно, скорости вращения вентилятора.

Читайте так же:
Регулировка карбюратор к 301 мото урал

Прибор имеет пониженный уровень шума, скорость оборотов может понижаться или повышаться ступенчато, в соответствии с понижением или повышением напряжения.

Тиристорные и симисторные контроллеры

Это самые распространенные приборы для регулировки вращения вентиляторов. Они используются для однофазных вентиляторов переменного тока. Тиристорный контроллер изменяет скорость вращения в большую или меньшую сторону в зависимости от изменения напряжения. Может быть установлен в приборах, где есть защита от перегрева.

Симисторный регулятор — это разновидность тиристорного. В нем используется симистор, который равен двум параллельно включенным тиристорам. Приборы могут применяться как для переменного, так и для постоянного тока. Скорость регулирования — от минимально необходимого напряжения до 220 В.

Они имеют небольшой размер и плавно переключают скорость, имеют простую конструкцию. К недостаткам можно отнести повышенный шум и небольшой срок службы.

6 способов регулировки скорости двигателя с помощью ПЧ

Любой преобразователь частоты имеет несколько каналов управления частотой выходного напряжения и, соответственно, скоростью вращения электродвигателя. Рассмотрим основные каналы на примере преобразователя VT Drive Fit.

Итак, скорость двигателя можно регулировать следующими способами.

1. Настройка параметра F0-08 в меню устройства. Заданное значение частоты программируется и запоминается. В процессе работы частоту можно оперативно менять при помощи клавиш «Вверх» и «Вниз». Этот канал управления выбирается установкой функции F0-03 = 0. Измененное значение частоты после выключения питания не сохраняется и при повторном включении вновь возвращается к значению, установленному в F0-08. Задать запоминание измененной в процессе работы частоты можно установкой параметра F0-03 = 1.

2. Использование аналоговых входов Ai1, Ai2, Ai3. Все три входа могут быть входами по напряжению, с диапазоном от 0 до 10 В. Вход Ai2 может использоваться как токовый — на плате имеется специальный джампер для переключения. Если необходимо наличие входа Ai3 (диапазон напряжения – от -10 до +10 В), применяется дополнительная плата расширения, которая заказывается отдельно. Для выбора этих каналов нужно задать F0-03 = 2, 3, 4.

3. Использование импульсного высокочастотного входа Di5. На этот вход могут быть поданы импульсы с напряжением от 9 до 30 В и частотой до 100 кГц. Соответствие между частотой на входе Di5 и выходной частотой преобразователя частоты VT Drive Fit определяется в параметрах F4-28…F4-31. Импульсы для работы на этом канале могут быть получены с вращающегося энкодера, с индуктивного или оптического датчика, а также с дискретного выхода другого ПЧ или контроллера. Для выбора данного канала устанавливается F0-03 = 5.

4. Если в работе требуется несколько значений частоты, их можно предварительно задать, используя многоскоростной (многоступенчатый) режим. Для этого необходимо установить F0-03 = 6. Код выбора частоты задается подачей сигналов на четыре дискретных входа Di.

5. Использование датчика ПИД-регулятора. Датчиком может быть любой преобразователь давления, температуры, напряжения в сигнал напряжения или тока. При этом реализуется обратная связь, позволяющая регулировать и поддерживать постоянными различные параметры технологических процессов. Для выбора этого канала устанавливается F0-03 = 8.

6. Выходную частоту можно менять путем подачи сигналов Up / Down на соответствующие дискретные входы. Для этого нужно функцию (F00…F4-10) этих входов установить на значения 6 и 7.

Выбор между источниками частоты

В общем случае можно выбрать 3 источника частоты, каждый из которых имеет каналы управления, перечисленные выше.

  1. Главный источник частоты Х. Выбор канала производится в параметре Х0-03.
  2. Вспомогательный источник частоты Y. Выбор канала производится в параметре Х0-04.
  3. Сочетание (суперпозиция) главного и вспомогательного источников, X и Y.

Примеры установки канала управления скоростью приведены для главного источника частоты Х. Для вспомогательного канала Y параметры задаются аналогичным образом. Максимальная выходная частота, независимо от канала и источника, ограничена параметром, заданным в параметре F0-10 (50…320 Гц).

Возможность регулировки частоты при помощи переменного резистора (потенциометра) отсутствует. Плавная регулировка возможна только путем применения внешнего потенциометра, подключенного на аналоговый вход Ai1…Ai3.

Урок 74. Регулировка скорости вращения двигателя без обратной связи. Измерение периода и частоты сигналов с помощью Ардуино.

Измерение частоты с помощью Ардуино

Продолжение разработки ПИД-регулятора скорости вращения двигателя постоянного тока. В уроке запустим двигатель без обратной связи. Научимся измерять временные параметры импульсов дискретного сигнала.

Попробуем управлять двигателем только с помощью ШИМ, не используя датчик оборотов.

Регулировка скорости вращения двигателя без обратной связи.

Я написал простую программу, которая формирует ШИМ пропорциональный напряжению на входе A0.

  • Измеряет напряжение сигнала на входе A0.
  • Усредняет его для защиты от помех.
  • Формирует ШИМ с коэффициентом заполнения пропорциональным среднему напряжению на выводе A0.
  • При формировании ШИМ учитывает “мертвое время”.
  • Выводит значение ШИМ в последовательный порт для контроля.
Читайте так же:
Volvo d13 регулировка клапанов инструкция

Вот скетч программы:

Зарегистрируйтесь и оплатите. Всего 60 руб. в месяц за доступ ко всем ресурсам сайта!

Поясню, что такое “мертвое время”. Допустим, ШИМ работает с высокой частотой, например, 62,5 кГц. Если мы зададим ему коэффициент заполнения 1, то это означает, что с периодом 16 мкс будет формироваться импульс длительностью 0,0625 мкс. Импульс такой короткой длительности транзисторный ключ не отработает, не успеет. В результате транзистор будет какое-то время в полуоткрытом режиме и не к чему хорошему это не приведет. Особенно на высоком напряжении.

Поэтому необходимо искусственно ограничивать импульсы минимальной длины. Если значение 1 транзистор не способен отработать, значит, вместо него необходимо формировать 0. Тоже самое в конце диапазона ШИМ. Например, значение 254 необходимо заменить на 255.

Отработку ”мертвого времени» производит следующий блок программы.

#define DEAD_TIME 10 // мертвое время

// мертвое время
if( valPwm < DEAD_TIME ) valPwm=0;
if( valPwm > (MAX_PWM — DEAD_TIME) ) valPwm= MAX_PWM;

Если значение ШИМ меньше заданного, оно заменяется на 0. Если больше, то оно равно максимальному значению ШИМ.

В программе в определенных пределах можно изменять частоту периода ШИМ.

TCCR2B= 1; // 62 500 Гц
//TCCR2B= 2; // 7 812 Гц
// TCCR2B= 3; // 1 953 Гц
// TCCR2B= 4; // 977 Гц
// TCCR2B= 5; // 488 Гц
// TCCR2B= 6; // 244 Гц
// TCCR2B= 7; // 61 Гц

Для формирования ШИМ используется таймер 2 и вывод 11.

Можно переключиться на вывод 3. Изменения коснутся только строки.

Использование других выводов недопустимо.

Загружаем скетч в контроллер, открываем монитор последовательного порта.

Значение ШИМ мотора

Вращаю переменный резистор, подключенный к входу A0. Монитор показывает изменение ШИМ. В положении резистора от 0 до максимума ШИМ равен 0, затем скачком меняется до 10. Дальше плавное изменение до 245 и скачок до 255. Т.е. заданное ”мертвое время” 10 отрабатывается правильно.

Дальше подключаем к схеме питание 12 В и проверяем работу ключа с мотором-вентилятором. Я проверил для разных частот ШИМ. Как не странно, лучше всего работает на низких частотах 244 и 61 Гц. Мотор начинает вращаться с ШИМ равным 30. На частоте 62,5 кГц вентилятор начинает вращаться при значении ШИМ 60. На средних частотах он еще противно пищит.

Когда Игорь проводил эти испытания на мощном двигателе 500 Вт, он категорично выбрал высокую частоту 62,5 кГц. На высоких частотах его двигатель вращается равномерно, без вибраций. Тише работает, начинает крутиться с меньшего значения ШИМ. Т.е. для каждого двигателя лучше выбирать частоту ШИМ экспериментально.

В любом случае регулировка с помощью ШИМ без обратной связи работает, скорость двигателя изменяется плавно. Конечно, частота оборотов непредсказуема и зависит от механической нагрузки.

Измерение периода и частоты входных импульсов с помощью Ардуино.

Чтобы стабилизировать скорость вращения мотора необходимо ее измерять. А скорость в свою очередь определяется частотой импульсов датчика Холла. Об этом сказано в предыдущем уроке. Как следствие возникает задача – измерение периода и частоты импульсов. Давайте на короткое время забудем про двигатель и научимся измерять частоту импульсов дискретного сигнала.

Задача не очень простая. Скорость вращения мотора у Игоря достигает 12000 об/мин. При такой скорости и использовании с датчиком Холла двух магнитов надо измерять временные параметры с периодом 2,5 мс. Если мы хотим обеспечить точность не более 1%, то разрешающая способность измерителя должна быть не более 250 мкс.

Но бывают и более скоростные двигатели. Часто используются датчики, которые формируют более 2 импульсов на оборот. Это еще уменьшает время дискретности измерителя.

А с другой стороны двигатель может вращаться и со скоростью 60 об/мин. Это соответствует периоду импульсов 0,5 сек.

  • наш измеритель должен иметь высокую разрешающую способность по времени (не более десятков мкс)
  • и широкий диапазон измерения (не менее 1 сек).

Измерять период с точностью десятков микросекунд чисто программными средствами невозможно. Даже если мы подадим измеряемый сигнал на вход внешнего прерывания, вряд ли это позволит решить задачу. Обработка прерывания может задерживаться другими прерываниями, например, счетчиком системного времени. А это будет искажать время измерения.

Читайте так же:
Регулировка гидроусилителя рулевого управления мтз 80

Поэтому будем использовать аппаратный узел микроконтроллера – таймер в режиме захвата. У микроконтроллера ATmega328 только таймер 1 может работать в этом режиме.

Лучше будет, если вы почитаете об этом режиме в документации на ATmega328. Я расскажу коротко и чисто с практической точки зрения.

Входной сигнал подключаем к входу ICP1 (вывод 8). Использование других выводов недопустимо.

Микроконтроллер выделяет нужный фронт сигнала на входе ICP1 (я задал перепад с высокого уровня на низкий) и по нему перегружает содержимое таймера 1 в специальный регистр ICR1. Можно считать значение этого регистра и тем самым узнать, когда был перепад входного сигнала, даже если чтение произошло позже самого события.

Дальше немного сложно в понимании, но объем информации небольшой. При желании можно разобраться по шагам.

Мы задаем режим работы таймера 1. Переводим его в режим простого счетчика от внутреннего генератора с максимальной частотой. В этом режиме каждые 0,0625 мкс к счетчику прибавляется 1. При достижении максимального значения 65536, он начинает считать с 0. Также задаем режимы для захвата и разрешаем прерывания таймера 1 по захвату и переполнению.

// установка режима захвата таймера 1
pinMode (8, INPUT_PULLUP); // вход сигнала захвата ICP, входные измеряемые импульсы
TCCR1A = 0; // нормальный режим работы таймера 1
TCCR1B = 0; // выбор отрицательного фронта входного сигнала
TCCR1B = (1 << ICNC1) | (1 << CS10); // включение подавления шума входного сигнала, частота тактирования — внутренний генератор, без деления
TCNT1 = 0; // сброс счетчика
TIMSK1 = (1 << ICIE1) | (1 << TOIE1); // разрешения прерываний таймера 1 по захвату и переполнению

Создаем обработчик прерывания по захвату (фронту входного сигнала).

// прерывание по сигналу захват (по отрицательному фронту измеряемого сигнала)
ISR (TIMER1_CAPT_vect) <
periodTime = (unsigned long)ICR1 | (((unsigned long)numOverflowTimer1) << 16);
TCNT1 -= ICR1;
numOverflowTimer1 = 0;
>

В нем мы считываем значение регистра ICR1 и сохраняем его в переменной periodTime .

Дальше нам надо сбросить счетчик таймера в 0, чтобы отсчет следующего времени начался с 0. Но с момента, когда реально был захват, прошло неизвестное нам время. Надо было его сбрасывать в 0 в момент захвата. Но тогда мы, возможно, отрабатывали другое прерывание. Поэтому мы вычитаем из счетчика значение его в момент захвата.

Что равносильно сбросу в 0 в момент захвата.

В результате вышеописанных действий в переменной periodTime оказывается время между захватами. Т.е. время между отрицательными фронтами входного сигнала. Реальное время будет равно значению periodTime , умноженному на дискретность таймера 0,0625 мкс.

Все было бы хорошо, но при периоде сигнала более 4096 мкс ( 65536 * 0,0625 мкс) таймер 1 переполнится. Значит, нам надо считать еще и переполнения таймера 1.

Для этого создаем обработчик прерываний по переполнению таймера.

// прерывание по переполнению таймера 1
ISR (TIMER1_OVF_vect) <
numOverflowTimer1++;
>

И полученное значение прибавляем к periodTime.

periodTime = (unsigned long)ICR1 | (((unsigned long)numOverflowTimer1) << 16);

Теперь все. В переменной periodTime получаем период входных импульсов. Для вычисления реального времени необходимо умножить его на 0,0625 мкс.

Пишем программу измерения временных параметров входного сигнала и проверяем ее работу.

Зарегистрируйтесь и оплатите. Всего 60 руб. в месяц за доступ ко всем ресурсам сайта!

Для проверки формируем на выводе 5 сигнал ШИМ с частотой 976,56 Гц.

analogWrite(5, 200); // формирование тестовых импульсов на выводе 5 (976,56 Гц)

Соединяем вывод 8 с выводом 5. Запускаем монитор последовательного порта.

Тестирование измерителя частоты Ардуино

Тестовый сигнал формируется аппаратным способом, поэтому имеет высокую стабильность.

Надо проверить работу нашего измерителя в полном диапазоне.

Для этого тестовый сигнал на выводе 5 формируем с помощью системного времени Ардуино.

Зарегистрируйтесь и оплатите. Всего 60 руб. в месяц за доступ ко всем ресурсам сайта!

Период задается в строке.

#define TEST_TIME 10 // время периода тестового сигнала (мс)

Проверяем для периода 10 мс.

Тестирование измерителя частоты

Вот период 100 мс

Тестирование измерителя частоты Ардуино

Тестирование измерителя частоты Ардуино

Высокой точности от формирования тестового сигнала с помощью системного времени ждать не приходится. Но измеритель работает нормально в широком диапазоне периода входного сигнала.

Такой способ измерения частоты и периода сигналов может использоваться в других приложениях.

В следующем уроке вернемся к двигателю. Будем измерять его скорость вращения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector