0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Решено; Нет регулировки тока полуавтомата

Решено Нет регулировки тока полуавтомата

Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки

Справочная информация

Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Неисправности

Все неисправности по их проявлению можно разделить на два вида — стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

О прошивках

Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

Схемы аппаратуры

Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

    (запросы) (хранилище) (запросы) (запросы)

Справочники

На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

Marking (маркировка) — обозначение на электронных компонентах

Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

Package (корпус) — вид корпуса электронного компонента

При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

  • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
  • SOT-89 — пластковый корпус для поверхностного монтажа
  • SOT-23 — миниатюрный пластиковый корпус для поверхностного монтажа
  • TO-220 — тип корпуса для монтажа (пайки) в отверстия
  • SOP (SOIC, SO) — миниатюрные корпуса для поверхностного монтажа (SMD)
  • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
  • BGA (Ball Grid Array) — корпус для монтажа выводов на шарики из припоя

Краткие сокращения

При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

СокращениеКраткое описание
LEDLight Emitting Diode — Светодиод (Светоизлучающий диод)
MOSFETMetal Oxide Semiconductor Field Effect Transistor — Полевой транзистор с МОП структурой затвора
EEPROMElectrically Erasable Programmable Read-Only Memory — Электрически стираемая память
eMMCembedded Multimedia Memory Card — Встроенная мультимедийная карта памяти
LCDLiquid Crystal Display — Жидкокристаллический дисплей (экран)
SCLSerial Clock — Шина интерфейса I2C для передачи тактового сигнала
SDASerial Data — Шина интерфейса I2C для обмена данными
ICSPIn-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
IIC, I2CInter-Integrated Circuit — Двухпроводный интерфейс обмена данными между микросхемами
PCBPrinted Circuit Board — Печатная плата
PWMPulse Width Modulation — Широтно-импульсная модуляция
SPISerial Peripheral Interface Protocol — Протокол последовательного периферийного интерфейса
USBUniversal Serial Bus — Универсальная последовательная шина
DMADirect Memory Access — Модуль для считывания и записи RAM без задействования процессора
ACAlternating Current — Переменный ток
DCDirect Current — Постоянный ток
FMFrequency Modulation — Частотная модуляция (ЧМ)
AFCAutomatic Frequency Control — Автоматическое управление частотой

Частые вопросы

После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.

Кто отвечает в форуме на вопросы ?

Ответ в тему Нет регулировки тока полуавтомата как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.

Как найти нужную информацию по форуму ?

Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.

По каким еще маркам можно спросить ?

По любым. Наиболее частые ответы по популярным брэндам — LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.

Какие еще файлы я смогу здесь скачать ?

При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям — схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.

Читайте так же:
Как отрегулировать клапана на скутере ирбис

Полезные ссылки

Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.

Переделка сварочного инвертора в полуавтомат своими руками

Большинство мастеров, работающих с железом, считают самым незаменимым устройством в своём арсенале сварочный полуавтомат. Он востребован как среди профессионалов, так и новичков. В основном полуавтоматическая сварка применяется в кузовном ремонте автомобилей, но это далеко не единственная область её применения.

Готовый аппарат можно приобрести практически повсеместно, однако владельцы обыкновенных сварочных инверторов зачастую не хотят докупать ещё одно устройство. В таком случае полезно знать, как переделать сварочный инвертор в полуавтомат своими руками. Стоит понимать, что это далеко не самая простая задача, но при желании и некоторых знаниях в области электротехники это вполне возможно.

Необходимые материалы и инструменты

Для сборки полуавтомата потребуется:

  • инверторный сварочный аппарат с током не менее 150 А;
  • горелка со специальным шлангом. Внутри шланга должны проходить газопровод, силовой и управляющий кабеля, а также направляющий канал для электродной проволоки;
  • механизм подающий проволоку;
  • контроллер к электромотору;
  • баллон с углекислотой;
  • электромагнитный клапан;
  • катушка с проволокой;
  • источник питания 12 В, и удобный корпус для сборки механизма.

Сборка механизма подачи электрода

Суть полуавтоматической сварки заключается регулируемой и беспрерывной подаче электрода непосредственно к горелке с помощью специального механизма. Собрать его самостоятельно вполне можно и самому. Для этого потребуется:

  1. Двигатель и механизм стеклоочистителя автомобиля.
  2. Корпус системного блока и компьютерный блок питания. Можно использовать любой другой БП, важно чтобы его ток был рассчитан на мощность двигателя.
  3. Разъём для подключения специального шланга.
  4. Подшипники, болт, полихлорвиниловая трубка, пружинка, фанера.
  5. Труба шириной соответствующей внутреннему диаметру катушки.

Итак, сборка механизма начинается с определения места расположения в корпусе катушки. Следует чётко разметить внешний диаметр внутри корпуса. Катушка должна устанавливаться таким образом, чтобы оставшегося пространства хватало для монтажа блока питания, шлангов, мотора и протягивающей части.

Протягивающее устройство лучше приобрести отдельно, но при желании его можно сконструировать самостоятельно. Для этого потребуется доработать механизм стеклоочистителя. В нём следует установить роликовые направляющие. Их роль могут выполнять обычные подшипники с проточенной вдоль канавкой. Перед подшипниками закрепляется направляющая часть. Ею может послужить просверленный вдоль болт соответствующего размера. На болт натягивается подпружиненный для жёсткости кембрик, внутри которого будет проходить электрод. Элементы механизма, на которых установлены ролики, должны быть сжаты между собой пружиной с возможностью регулировки сжатия. Во внешней части корпуса монтируется специальный разъём для шланга.

В центре размеченной области под катушку устанавливается бабина из пластиковой трубы. Для её основы можно использовать кусок фанеры.

Электрическая составляющая

Для подающего устройства также следует собрать электрическую составляющую. Она состоит из следующих компонентов:

  • контроллер для мотора 12 В;
  • реле задержки;
  • электрический клапан;

Электродвигатель обязательно должен быть подключен через контроллер. Это даст возможность регулировки подачи электрода. Схема подключения идёт в комплекте с контроллером. Однако для выполнения этой и всех последующих работ потребуются базовые знания электротехники.

Для того чтобы электрод к месту сварки подавался с небольшим запаздыванием нужно установить реле задержки двигателя. Сделать его можно на основе транзистора КТ815, а также электролитического конденсатора ёмкостью 200 – 1000 мкФ. Сборку этой схемы должен проводить человек, который хорошо разбирается в электронике.

Электронный клапан располагается в корпусе таким образом, чтобы при работе механизма его никак не задевали движущиеся элементы. В схему он подключается так чтобы при нажатии кнопки на горелке, клапан сразу же открывался.

На последнем этапе требуется небольшая доработка самого инвертора. Поскольку его вольтамперные характеристики не соответствуют полуавтоматической сварке. Самый простой способ, это добавление к плюсовому контакту дросселя от лампы дневного света, так чтобы ток шёл через него.

Переделать сварочный инвертор в полуавтоматический вполне возможно, но как видно из всего вышеописанного, это довольно трудоёмкая работа требующая знаний в электротехнике.

Методические рекомендации о принципах настройки классического инверторного полуавтомата для начинающих сварщиков.

В данной статье речь пойдет о моделях полуавтоматов, у которых на панели управления имеются такие регуляторы как:

Панель управления.jpg

  1. регулировка напряжения — voltage;
  2. регулировка тока — current (Стоит отметить, что управление сварочным током в полуавтоматах, более правильно называть регулировкой подачи проволоки);
  3. индуктивность — inductance.

Рассмотрим по какой методике действовать, чтобы успешно настраивать инверторные аппараты с тремя ручками управления (Аналогичное управление встречается в аппаратах серий OVERMAN, SKYWAY, ULTIMATE и на многих других, но алгоритм действий по настройке будут практически одинаковые).

Ниже мы постараемся пояснить как параметры влияют друг на друга и как производить настройку аппарата в различных условиях: разный газ, разные толщины металла и проволоки, разные материалы заготовок. Создадим универсальный алгоритм, по которому шаг за шагом можно будет прийти к желаемому результату.

Читайте так же:
Как отрегулировать высокие обороты бензопилы

Настройка полуавтомата. Органы управления.

Сам процесс называется – электродуговая сварка, то есть, чтобы у нас произошла какая-то сварка, нам нужно создать в цепи электрическое напряжение. Если напряжения в цепи не будет, то какую бы ручку (подача проволоки, индуктивность) мы бы не крутили, понятно, что ничего электрического не произойдет.

Поэтому сначала нужно создать напряжение в нашей сети. Конечно, для настройки лучше использовать справочные сварочные таблицы зависимости напряжения и используемого материала. Но когда справочных или табличных данных нет, то начнём проще. В начале мы достаточно приблизительно ставим напряжение. Если материал тонкий, крутим ручку ближе к минимальным значениям. Если материал – средний, то в середине. Если материал толстый, то нам надо взять полную мощность, крутим ручку к максимуму. Но даже к большим мощностям лучше подходить откуда-нибудь с середины.

Voltage.jpg

Кстати, не забывайте выбирать сварочную проволоку того же материала, с которым вы работаете и соответствующего диаметра. Для работы с тонким материалом, проволока также должна быть тонкой. Для стали проволока должна быть стальная, для нержавейки – нержавеющая, для алюминия – алюминиевая.

Вернёмся к напряжению, если материал тонкий – поставим напряжение в начало (ориентировочно). Если нам нужно будет добавить мощность, то мы еще успеем поставить больше.

Далее переходим ко второй ручке.

current.jpg

Чаще всего она называется «сварочный ток» – но на самом деле это никакой не ток. Ручка так называется для простоты восприятия. На самом деле, это регулировка подачи проволоки. Увеличивая или уменьшая эту регулировку, мы просто увеличиваем или уменьшаем напряжение на моторе подающего механизма. В сварочных аппаратах мотор, кстати, используется обыкновенный, коллекторный мотор постоянного тока, как в автомобиле от дворников или от печки на каком-нибудь грузовике. Особенность такого мотора — когда меняется напряжение, меняется скорость вращения, этим мы и занимаемся, крутя эту ручку. Ни с каким инвертором, ни с какими токовыми цепями, ни с какой другой схемотехникой эта ручка никак не связана. Ручка «сварочного тока» — это просто потенциометр, который увеличивает или уменьшает напряжение на моторе. Мотор, соответственно, подаёт проволоку к месту сварки быстрее или медленнее. Собственно, вы можете просто открыть крышку, покрутить ручку и посмотреть, как крутятся ролики.

Итак, напомним, энергию, мощность процесса, который будет происходить в сварочной дуге, температура процесса, частота переноса, длина дуги и т.п. изначально мы получаем регулировкой напряжения. Грубо говоря, сварочное напряжение – это энергия процесса. А второй ручкой, управляя скоростью подающего мотора, мы регулируем перенос плавящегося электрода в сварочную ванну. Если скорость у нас будет очень маленькая, передача будет происходить одиночными, короткими замыканиями, как будто взрывами. Процесс будет такой щелкающий, резко, капли с огромным количеством брызг. Тогда мы плавно прибавляем подачу проволоки и наблюдаем за процессом. Короткие замыкания становятся все чаще и чаще, и наконец, они сливаются в единый звук, похожий на журчание. Идеально — это звук порядка 100 Гц. Вообще, частота бывает от 70 Гц, но диапазон в 120-130 Гц человеческим ухом уже воспринимается, как ровное гудение. В месте сварки нам сразу нам будет заметно, что уменьшилось разбрызгивание и где-то в этой зоне, мы начинаем искать идеальную точку. Рекомендуем поэкспериментировать, поверните ручку «сварочного тока» чуть-чуть вправо, чуть-чуть влево. Сначала движения большие, потом поменьше, повторите чуть-чуть вправо, чуть-чуть влево. Наконец, вы сами найдёте точку с оптимальным переносом. Ведь ручкой подачи скорости мы заниманием настройкой переноса металла в зону сварки.

После того, как мы настроим процесс, мы получим характерную длину дуги. С физической стороны этого явления, для каждой длины дуги будет характерное сопротивление. По известной формуле, поделив напряжение на это сопротивление, мы получим сварочный ток. Вот именно это хотели подсказать инженеры в надписи данной регулировки. Они как бы пытались спрогнозировать, какой будет ток, если будет подобрана правильная подача проволоки. Но бывает, что это сбивает с толку и профессионалов, и любителей. Многие думают, что ток можно подкорректировать, конечно, подкорректировать ток можно, но нельзя сделать это, не разрушая оптимальную настройку напряжения и подачи.

Существует одна единственная оптимальная точка баланса сварочного напряжения и скорости подачи проволоки. Если представить график с двумя пересекающимися кривыми, то их пересечение и небольшая область вокруг этой точки – это и есть сварочный процесс. Немножко гуляет подача, немного гуляет дуга, немножко мы двигаем горелкой все время. Из-за этого опять же меняется длина дуги и меняются токи. Но совершенно неправильно, сказать, например, что мы работали на 90А, а надо на 140А, и просто повернуть одну ручку. Если вы нашли баланс один раз и получили хороший сварочный процесс, то невозможно взять и поднять ток, не нарушая сварочного процесса. Мы собьём оптимальную настройку, мы собьём перенос, либо увеличится разбрызгивание, либо станет очень короткая длина дуги, вместо хорошей укладки, получим подрезы, прожигание или, может произойти утыкание проволоки с периодическими взрывами. После этого можно гадать очень долго, что у произошло, подача не работает или подающий канал горелки забился или еще что-то. На самом деле вы просто расстабилизировали процесс, точнее сбили оптимальную настройку аппарата. Следует помнить, что точка эта она одна, и вы в ее окрестности работаете.

Читайте так же:
Иж комби регулировка зажигания

Теперь перейдём к третьей ручке нашего аппарата.

Inductance.jpg

Индуктивность — это динамика инвертора, которой мы также можем вручную управлять. Что же значит «динамика»? На маленьких, у нас очень маленькие капельки они с очень большой частотой переносятся все это понятно и видно на глаз и на слух. Здесь сомнений нет.

Если у нас будет маленькая индуктивность, то мы получим очень маленькие капельки, которые с очень большой частотой переносятся в сварочную ванну. Каждая капля – это всплеск по току и напряжению. Насколько быстро аппарат может сделать подъем напряжения и потом его сброс, настолько же быстро сформированная капелька может переходить от электродной проволоки в сварочную ванну. Выстрелил током, сбросил каплю, выстрелил током, сбросил каплю. Конечно, все это происходит с большой частотой. Чтобы переносить маленькие капельки на небольших токах, соответственно, динамика должна быть высокая, то есть низкая индуктивность. Если у нас большие токи, то капля на дуге растёт большая.

Например, если мы работаем на сварочных токах за 200А, чтобы сгладить разбрызгивание, следует добавить индуктивность. Не забываем работать творчески, начнем с середины регулировки, при необходимости можем выкрутить и на максимум. На максимальных токах избежать полного разбрызгивания металла нам не удастся на простых аппаратах. Подобную задачу может решать только современные синергетические сложные машины, у которых есть соответствующей мощности микропроцессор, которые также могут реализовывать пульсовые технологии, или технологии аналогичные STI, ColdARC, Root. Но сейчас не об этом. Мы говорим об относительно простом инструменте, где мы вручную пытаемся синхронизировать динамику процесса, и надо этим творчески пользоваться. На больших токах еще раз повторим, не удастся сделать разбрызгивание таким же маленьким, как на низких токах, но, тем не менее, иметь хоть какой-то регулятор лучше чем, не иметь ничего вообще. Поэтому Overman, Ultimate и аналогичные аппараты с тремя ручками – уже очень неплохой вариант. В некоторых случаях удается настроиться на очень хорошие режимы.

В частности, на очень маленьких значениях индуктивности, напряжения и подачи проволоки аппарат OVERMAN способен достигать результатов, очень похожих на процесс STT компании Lincoln Electric. Но чтобы повторить такие процессы, сначала, конечно, надо получить большой опыт работы на этих аппаратах, чтобы понимать, как работают современные синергетические инверторные машины с мощным процессором. Если вы до тонкостей понимаете, как работает профессиональная европейская машина, то очень часто вы сможете повторить процесс и на простом аппарате с тремя ручками.

Вы можете ознакомиться с видео «От первого лица», где наглядно представлен взгляд инженера-сварщика Г.К. AURORA на общие принципы настройки полуавтоматов оснащённых тремя ручками настройки (AuroraPRO OVERMAN / SPEEDWAY / SKYWAY)


Ремонт и доработки сварочных инверторов своими руками

Характеристики большинства бюджетных инверторов нельзя назвать выдающимися, в то же время мало кто откажется от удовольствия использовать оборудование со значительным запасом надёжности. Между тем существует немало способов усовершенствовать недорогой сварочный инвертор.

Ремонт и доработки сварочных инверторов своими руками

Типовая схема и принцип работы инвертора

Чем дороже сварочный инвертор, тем больше в его схеме вспомогательных узлов, задействованных в реализации специальных функций. А вот сама схема силового преобразователя остаётся практически неизменной даже у дорогостоящего оборудования. Этапы превращения сетевого электрического тока в сварочный достаточно легко проследить — на каждом из основных узлов схемы происходит определённая часть общего процесса.

С сетевого кабеля через защитный выключатель напряжение подаётся на выпрямительный диодный мост, сопряжённый с фильтрами высокой ёмкости. На схеме этот участок легко заметить, здесь расположены внушительные по размеру «банки» электролитических конденсаторов. У выпрямителя задача одна — «развернуть» отрицательную часть синусоиды симметрично вверх, конденсаторы же сглаживают пульсации, приводя направление тока практически к чистой «постоянке».

Функциональная схема сварочного инвертораСхема работы сварочного инвертора

Читайте так же:
Как отрегулировать клапана на автобусе паз

Далее по схеме находится непосредственно инвертор.

С понижающего трансформатора напряжение снимает выходной выпрямитель, ведь мы хотим сварку именно на постоянном токе. Благодаря выходному фильтру природа тока меняется с высокочастотного пульсирующего до практически прямой линии. Естественно, в рассмотренной цепи преобразований есть множество промежуточных звеньев: датчиков, управляющих и контрольных цепей, но их рассмотрение выходит далеко за рамки любительской радиоэлектроники.

Конструкция сварочного инвертораКонструкция сварочного инвертора: 1 — конденсаторы фильтра; 2 — выпрямитель (диодная сборка); 3 — IGBT-транзисторы; 4 — вентилятор; 5 — понижающий трансформатор; 6 — плата управления; 7 — радиаторы; 8 — дроссель

Узлы, пригодные к модернизации

Важнейший параметр любого сварочного аппарата — вольт-амперная характеристика (ВАХ), за счёт неё и обеспечивается стабильное горение дуги при разной её длине. Правильная ВАХ создаётся микропроцессорным управлением: маленький «мозг» инвертора на ходу меняет режим работы силовых ключей и мгновенно подстраивает параметры сварочного тока. К сожалению, каким либо образом перепрограммировать бюджетный инвертор нельзя — управляющие микросхемы в нём аналоговые, а замена на цифровую электронику требует незаурядных знаний схемотехники.

Однако «умений» управляющей схемы вполне достаточно, чтобы нивелировать «криворукость» начинающего сварщика, ещё не научившегося стабильно удерживать дугу. Гораздо правильнее сосредоточиться на устранении некоторых «детских» болезней, первая из которых — сильный перегрев электронных компонентов, ведущий к деградации и разрушению силовых ключей.

Модернизация сварочного инвертора

Вторая проблема — использование радиоэлементов сомнительной надёжности. Устранение этого недостатка сильно снижает вероятность возникновения поломок через 2–3 года эксплуатации аппарата. Наконец, даже начинающему радиотехнику будет вполне по силам реализовать индикацию фактического сварочного тока для возможности работы со специальными марками электродов, а также провести ряд других мелких доработок.

Улучшение теплоотвода

Первый недостаток, которым грешит подавляющее большинство недорогих инверторных аппаратов — плохая схема отвода тепла с силовых ключей и выпрямительных диодов. Начинать доработку в этом направлении лучше с увеличения интенсивности принудительного обдува. Как правило, в сварочных аппаратах устанавливают корпусные вентиляторы с питанием от служебных цепей напряжением 12 В. В «компактных» моделях принудительное воздушное охлаждение может вовсе отсутствовать, что для электротехники такого класса, безусловно, нонсенс.

Достаточно просто увеличить воздушный поток путём установки нескольких таких вентиляторов последовательно. Проблема в том, что «родной» кулер скорее всего придётся снять. Чтобы эффективно работать в последовательной сборке, вентиляторы должны иметь идентичную форму и число лопастей, а также скорость вращения. Собрать одинаковые кулеры в «стопку» крайне просто, достаточно стянуть их парой длинных болтов по диаметрально противоположным угловым отверстиям. Также не стоит беспокоиться о мощности источника служебного питания, как правило её достаточно для установки 3–4 вентиляторов.

Улучшение охлаждения сварочного инвертора

Если внутри корпуса инвертора недостаточно места для установки вентиляторов, можно приладить снаружи один высокопроизводительный «канальник». Его установка проще по той причине, что не требуется подключение к внутренним цепям, питание снимается с клемм кнопки включения. Вентилятор, разумеется, должен устанавливаться напротив вентиляционных жалюзеек, часть которых можно вырезать, чтобы снизить аэродинамическое сопротивление. Оптимальное направление потока воздуха — на вытяжку из корпуса.

Второй способ улучшить теплоотвод — замена штатных алюминиевых радиаторов на более производительные. Новый радиатор нужно выбирать с наибольшим количеством как можно более тонких рёбер, то есть с наибольшей площадью контакта с воздухом. Оптимально в этих целях использовать радиаторы охлаждения компьютерных ЦП. Процесс замены радиаторов довольно прост, достаточно соблюдать несколько простых правил:

  1. Если штатный радиатор изолирован от фланцев радиоэлементов слюдой или резиновыми прокладками, их нужно сохранить при замене.
  2. Для улучшения теплового контакта нужно использовать кремнийорганическую термопасту.
  3. Если радиатор нужно подрезать, чтобы он поместился в корпус, обрезанные рёбра нужно тщательно обработать надфилем, чтобы снять все заусенцы, иначе на них будет обильно оседать пыль.
  4. Радиатор должен быть плотно прижат к микросхемам, поэтому предварительно на нём нужно разметить и просверлить крепёжные отверстия, возможно, потребуется нарезать резьбу в теле алюминиевой подошвы.

Улучшение теплоотвода сварочного инвертора

Дополнительно отметим, что нет смысла менять штучные радиаторы отдельно стоящих ключей, замене подвергаются только теплоотводы интегральных схем или нескольких высокомощных транзисторов, установленных в ряд.

Индикация сварочного тока

Даже если на инверторе установлен цифровой индикатор установки тока, он показывает не реальное его значение, а некую служебную величину, масштабированную для наглядного отображения. Отклонение от фактической величины тока может составлять до 10%, что неприемлемо при использовании специальных марок электродов и работе с тонкими деталями. Получить реальное значение сварочного тока можно путём установки амперметра.

Цифровой амперметр SM3D

В пределах 1 тысячи рублей обойдётся цифровой амперметр типа SM3D, его даже можно аккуратно встроить в корпус инвертора. Основная проблема в том, что для измерения столь высоких токов требуется подключение через шунт. Его стоимость находится в пределах 500–700 рублей для токов в 200–300 А. Обратите внимание, что тип шунта должен соответствовать рекомендациям производителя амперметра, как правило, это вставки на 75 мВ с собственным сопротивлением порядка 250 мкОм для предела измерения в 300 А.

Читайте так же:
Регулировка скорости вращения электродвигателя 380 вольт

Шунт для амперметра

Установить шунт можно либо на плюсовую, либо на минусовую клемму изнутри корпуса. Обычно размеров соединительной шины достаточно для подключения вставки длиной около 12–14 см. Изгибать шунт нельзя, поэтому если длины соединительной шины недостаточно, её нужно заменить медной пластиной, косичкой из очищенного однопроволочного кабеля или отрезком сварочной жилы.

Подключение амперметра через шунт

Амперметр подключается измерительными выходами к противоположным зажимам шунта. Также для работы цифрового прибора требуется подать напряжение питания в диапазоне 5–20 В. Его можно снять с проводов подключения вентиляторов или найти на плате точки с потенциалом для питания управляющих микросхем. Собственное потребление амперметра ничтожно.

Повышение продолжительности включения

Продолжительность включения в контексте сварочных инверторов более разумно называть продолжительностью нагрузки. Это та часть десятиминутного интервала, в которой инвертор непосредственно выполняет работу, оставшееся время он должен пребывать на холостом ходу и охлаждаться.

Для большинства недорогих инверторов реальная ПН составляет 40–45% при 20 °С. Замена радиаторов и устройство интенсивного обдува позволяют увеличить этот показатель до 50–60%, но это далеко не потолок. Добиться ПН порядка 70–75% можно путём замены некоторых радиоэлементов:

  1. Конденсаторы обвязки ключей инвертора нужно поменять на элементы той же ёмкости и типа, но рассчитанные под более высокое напряжение (600–700 В);
  2. Диоды и резисторы из обвязки ключей следует заменить на элементы с большей рассеиваемой мощностью.
  3. Выпрямительные диоды (вентили), а также MOSFET или IGBT-транзисторы можно заменить на аналогичные, но более надёжные.

Замена конденсаторов в сварочном инверторе

О замене самих силовых ключей стоит рассказать отдельно. Для начала следует переписать маркировку на корпусе элемента и найти подробный даташит на конкретный элемент. По паспортным данным выбрать элемент для замены достаточно просто, ключевыми параметрами служат пределы частотного диапазона, рабочее напряжение, наличие встроенного диода, тип корпуса и предельный ток при 100 °С. Последний лучше рассчитать собственноручно (для высоковольтной стороны с учётом потерь на трансформаторе) и приобрести радиоэлементы с запасом предельного тока около 20%. Из производителей такого рода электроники наиболее надёжными считаются International Rectifier (IR) или STMicroelectronics. Несмотря на довольно высокую цену, крайне рекомендуется приобретать детали именно этих брендов.

Замена силовых транзисторов в сварочном инверторе

Намотка выходного дросселя

Одним из наиболее простых и в то же время самых полезных дополнений для сварочного инвертора будет намотка индуктивной катушки, сглаживающей пульсации постоянного тока, которые неизбежно остаются при работе импульсного трансформатора. Основная специфика такой затеи в том, что дроссель изготавливается индивидуально для каждого отдельного аппарата, а также может со временем корректироваться по мере деградации электронных компонентов или при изменении порога мощности.

Заводской дроссель сварочного инвертора

Для изготовления дросселя понадобится всего ничего: изолированный медный проводник сечением до 20 мм 2 и сердечник, желательно из феррита. В качестве магнитопровода оптимально подойдёт либо ферритовое кольцо, либо сердечник броневого трансформатора. Если магнитопровод набран из листовой стали, его нужно просверлить в двух местах с отступом около 20–25 мм и стянуть заклёпками, чтобы иметь возможность беспроблемно прорезать зазор.

Выходной дроссель для сварочного инвертора

Дроссель начинает работать, начиная от одного полного витка, однако реальный результат виден, начиная с 4–5 витков. При испытаниях следует добавлять витки до тех пор, пока дуга не начнёт ощутимо сильно тянуться, мешая отрыву. Когда варить с отрывом станет затруднительно, нужно скинуть с катушки один виток и подключить параллельно дросселю лампу накаливания на 24 В.

Тонкая настройка дросселя выполняется с помощью сантехнического винтового хомута, которым можно уменьшить зазор в сердечнике, либо деревянного клина, которым этот зазор можно увеличить. Нужно добиваться, чтобы горение лампы при розжиге дуги было максимально ярким. Рекомендуется изготовить несколько дросселей для работы в диапазонах до 100 А, от 100 до 200 А и более 200 А.

Выходной дроссель для сварочного инвертора

Заключение

Все «навесные» дополнения, такие как дроссель или амперметр, лучше монтировать отдельной приставкой, которая включается в разрыв любой из сварочных жил посредством штекера типа байонет. Таким образом внутри корпуса инвертора сохранится достаточно пространства для вентиляции, а дополнительные устройства можно будет легко отключить за ненадобностью.

Нужно помнить, что кардинальной, глубокой модернизации провести не получится, иными словами, «РЕСАНТУ» в KEMPPI разумными силами и средствами не превратить. Однако изготовление приспособлений и мелкая доработка оборудования — отличный способ лучше изучить технологию дуговой сварки и проникнуться профессиональными тонкостями.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector