2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какой реостат нужен для зарядного устройства

Какой реостат нужен для зарядного устройства

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.


Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.


Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.


Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.


Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.


Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно.


Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.


Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном.


Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

Выход операционного усилителя управляется мощным полевым транзистором.

То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.


Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Введите электронную почту и получайте письма с новыми поделками.

Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором,


в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.

Взамен будет нагреваться транзистор и от этого никуда не денешься.

Автор; АКА Касьян

Популярное;

  • Простой регулятор напряжения на LM317, схема
  • Преобразователь напряжения +U в -U на микросхеме CD4049, схема.
  • Стабилизатор напряжения с регулируемой нагрузкой для ЗУ
  • Схемы зарядных устройств (с использованием LM317, LM338)
  • Маломощный лабораторный источник питания на LM317
  • Три источника питания для автомобиля с 24 на 12 вольт.
  • Стабилизатор тока для светодиодов
  • Простой стабилизатор напряжения к зарядному устройству
Читайте так же:
Регулировка сливного клапана центробежного масляного фильтра

Зарядное устройство на гасящих конденсаторах

Зарядка для АКБ из блока питания компьютера

Для зарядки любого аккумулятора хватит 5-6 ампер-часов, это является около 10% от емкости всей батареи. Произвести его, может, любой блок питания емкостью от 150 Вт.

Итак, рассмотрим 2 способа самостоятельного изготовления зарядного устройства из компьютерного блока питания.

Способ первый

зарядка из блока питания

Для изготовления нужны следующие детали:

  • блок питания, мощностью от 150 Вт;
  • резистор 27 кОм;
  • регулятор тока R10 или блок резисторов;
  • провода длиной от 1 метра с клеммами;

Ход выполнения работ:

  1. Для начала нам потребуется разобрать блок питания.
  2. Извлекаем неиспользуемые нами провода, а именно -5в, +5в, -12в и +12в.
  3. Совершаем замену резистора R1 на заранее заготовленный резистор 27 кОм.
  4. Удаляем провода 14 и 15, а 16 просто отключаем.
  5. Из блока выводим сетевой шнур и провода к аккумуляторной батарее.
  6. Устанавливаем регулятор тока R10. В отсутствие такого регулятора, можно изготовить самодельный блок резисторов. Состоять будет он из двух резисторов 5 Вт, которые будут соединены параллельно.
  7. Для настройки зарядного устройства, в плату устанавливаем переменный резистор.
  8. К выходам 1,14,15,16 припаиваем провода, а резистором устанавливаем напряжение 13,8-14,5в.
  9. На окончание проводов присоединяем клеммы.
  10. Остальные ненужные дорожки удаляем.

Способ второй

Для изготовления нашего устройства по данному способу, потребуется блок питания немного мощнее, а именно на 350 Вт. Так как он может выдать 12-14 ампер, что удовлетворит наши потребности.

Ход выполнения работ:

  1. В блоках питания от компьютера импульсный трансформатор имеет несколько обмоток, Одна из них на 12в, а вторая на 5в. Для изготовления нашего устройства нужна только обмотка на 12в.
  2. Для запуска нашего блока потребуется найти зеленый провод и замкнуть его с черным проводом. При использовании дешевого китайского блока, возможно, там будет не зеленый, а серый провод.
  3. Если у вас блок питания старого образца с кнопкой включения, вышеуказанная процедура не нужна.
  4. Далее, составляем из желтых и черных проводов 2 толстые шины, а ненужные провода обрезаем. Черная шина будет минусом, желтая соответственно плюсом.
  5. Для повышения надежности нашего устройства можно осуществить замену местами диодов. Дело в том, что на 5в шине стоит более мощный диод, чем на 12в.
  6. Так как в блоке питания стоит встроенный вентилятор, то ему не страшны перегревы.

Способ третий

Для изготовления нам потребуются следующие детали:

  • блок питания, мощностью 230 Вт;
  • плата с микросхемой TL 431;
  • резистор 2,7 кОм;
  • резистор 200 Ом мощностью 2 Вт;
  • резистор 68 Ом мощностью 0,5 Вт;
  • резистор 0,47 Ом мощностью 1 Вт;
  • реле на 4 контакта;
  • 2 диода 1N4007 или подобные диоды;
  • резистор 1кОм;
  • светодиод яркого цвета;
  • длина провода не менее 1 метра и сечением не меньше 2,5 мм 2, с клеммами;

Простейшее устройство с использованием адаптера

адаптер для прикуривателя

Теперь рассмотрим случай, когда в наличии нет ненужного блока питания, наш аккумулятор сел и его нужно зарядить.

У каждого хорошего хозяина или поклонника всяких электронных приборов, имеется адаптер для подзарядки автономной техники. Любой 12в адаптер, можно использовать для зарядки автомобильного аккумулятора.

Главным условием такой зарядки является не меньшее выдаваемое напряжение источником, чем у аккумулятора.

Ход выполнения работ:

  1. Необходимо отрезать разъем с окончания провода адаптера и счищаем изоляцию не меньше 5 см.
  2. Так как провод идет сдвоенный, необходимо его разделить. Расстояние между окончанием 2 проводов, должно быть, не меньше 50 см.
  3. Припаиваем или приматываем к окончаниям провода клеммы для надежной фиксации на аккумуляторной батарее.
  4. Если клеммы одинаковые, то нужно позаботиться о нанесении на них знаков различия.
  5. Самое большое неудобство этого способа заключается в постоянном контроле над температурой адаптера. Так как если адаптер перегорит, то это может вывести аккумулятор с рабочего состояния.

Зарядное устройство из диода и бытовой лампочки

Диод – это полупроводниковый электронный прибор, который способен проводит ток в одном направлении, имеет сопротивление, приравненное к нулю.

В качестве диода будет использован адаптер зарядки к ноутбуку.

Для изготовления такого вида устройства, нам потребуется:

  • адаптер зарядки к ноутбуку;
  • лампочка;
  • провода длиной от 1 м;

Каждый зарядный прибор для автомобиля выдает около 20в напряжения. Так как диод его заменяет адаптер и пропускает напряжение только в одну сторону, он защищен от короткого замыкания, которое может случиться при неправильном подключении.

Чем больше мощность лампочки, тем быстрее происходит заряд аккумулятора.

Ход выполнения работ:

  1. К плюсовому проводу адаптера ноутбука подсоединяем нашу лампочку.
  2. От лампочки бросаем провод на плюс.
  3. Минус от адаптера напрямую подключаем к аккумулятору.
Читайте так же:
Как отрегулировать расход на редукторе

В случае правильного подключения, наша лампочка будет светиться, потому что ток на клеммах низкий, а напряжение большое.

Исходя из этого, подключать лампочку высокой мощности можно только в особых случаях.

Этот способ предусматривает постоянное наблюдение и измерение напряжения на клеммах. Перезаряд батареи приведет к обильному выделению водорода, и она может выйти из строя.

При зарядке АКБ таким способом, постарайтесь находиться возле прибора, так как временное оставление его без присмотра может привести к выходу из строя прибора и АКБ.

Проверка и настройка

Для проверки нашего прибора необходимо наличие исправной автомобильной лампочки. Сначала, с помощью провода подключаем нашу лампочку к зарядке, помня о соблюдении полярности. Включаем зарядку в сеть и лампочка загорелась. Все работает.

Лабораторный блок питания своими руками

Подача напряжения питания для различной электронной аппаратуры может осуществляться не только от заводских устройств. Блок питания (БП) своими руками можно сделать и в домашних условиях. В том случае, когда такой аппарат нужен для постоянной работы с различными напряжениями при регулировке: усилителей, генераторов и других самодельных схем, желательно, чтобы он был лабораторным.

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична.

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения.

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Внимание! Установленные светодиоды гаснут при срабатывании защиты по току, если он превышает значение 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности.

Читайте так же:
Регулировка тормозной рычажной передачи грузовых вагонов

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится.

Изготовление печатной платы и сборка

Схема подразумевает изготовление трёх печатных плат. Платы подбираются для корпуса Kradex Z4A.

Платы выполнены из фольгированного гетинакса путем фотопечати и протравки дорожек.

Настройка блока питания

Правильно собранное устройство не нуждается в особой регулировке. Необходимо лишь подстроить диапазоны регулировки тока и напряжения.

Четыре операционных усилителя в микросхеме LM324 осуществляют регулировку тока и напряжения. Микросхема питается через фильтр, собранный на L1, C1 и С2.

Чтобы настроить схему регулировки, нужно подобрать элементы, помеченные звёздочкой, для маркировки регулирующих диапазонов.

Индикация

Для индикации обычно используются устройства индикации и модуль измерения на микроконтроллерах. Питание таких контроллеров лежит в пределах 3-5 В.

Рекомендации по улучшению надежности

Лабораторный бп должен простоять под нагрузкой не менее 2 часов. После этого проверяют температуру корпусов трансформаторов, работу теплоотводов. При намотке трансформаторов для снижения шума при работе намотку обмоток осуществляют плотно виток к витку. Готовую конструкцию заливают парафином. При установке элементов на радиаторы места контактов промазывают теплопроводящей пастой.

В корпусе просверливают ряд отверстий, напротив теплоотводов, сверху дополнительно устанавливают кулер.

Защита блока питания

Токовая стабилизация (защита) микросхемы LM324 срабатывает при превышении установленного токового порога. В этом случае на микросхему приходит сигнал о понижении напряжения. Красный светодиод служит индикатором повышения напряжения или возникновения короткого замыкания. В рабочем режиме светится зеленый светодиод.

Советы по оформлению корпуса

Корпус Kradex Z4A позволяет выводить элементы управления и индикации, как на лицевую, так и на боковые панели. Ручки регулировки, индикатор лучше всего устанавливать на лицевую панель. Разъем для выходного напряжения можно крепить где угодно.

Собранный своими руками лабораторный блок питания с использованием мощных полевых транзисторов и импульсных трансформаторов незаменим для работы. В качестве индикаторов желательно использовать цифровые электронные ампервольтметры.

Видео

Переменный резистор для регулировки напряжения блока питания

Регулируем напряжение

Прибор, схема которого изображена на рисунке 1, предназначен для регулировки переменного напряжения. Он сочетает в себе преимущества трансформаторных преобразователей (гальваническое разделение от сети и, как следствие, безопасность в работе) и тиристорных регулирующих устройств (плавная регулировка выходного напряжения в широком диапазоне, высокий КПД). Ценное свойство этого регулятора — электронная защита от токовых перегрузок, возникающих при включении его в сеть. Силовые элементы его и нагрузка предохранены от повреждений экстратоками. Устранение «бросков» тока при включении значительно увеличивает ресурс ламп накаливания, имеющих низкое сопротивление холодной нити.

Совместно с простейшим диодно-мостовым выпрямителем регулятор используется и как источник постоянного напряжения, точнее, пульсирующего напряжения, которое можно сгладить емкостным фильтром.

КПД регулятора высок: он достигает 70. 80 процентов и определяется в основном потерями в трансформаторе. Трансформатор может быть как понижающим (в этом случае число витков обмотки L1 больше, чем у L2), так и повышающим.

Регулятор может найти применение в лабораторном блоке питания для получения постоянного или переменного напряжения. Пригодится он и для зарядки мощных аккумуляторов. При этом используют понижающий трансформатор с коэффициентом трансформации 10. 15. В этом случае ток, протекающий в цепи первичной обмотки трансформатора, примерно в 10. 15 раз меньше тока вторичной обмотки. Таким образом, тепловая мощность, рассеиваемая на силовом тринисторе VD, незначительна даже при больших токах нагрузки (5. 10 А). Это позволяет обойтись без теплоотводящих радиаторов и упрощает конструкцию регулятора.

Принцип действия прибора таков. Среднее (или эффективное) значение напряжения регулируется путем изменения фазового угла зажигания силового тринистора. Силовой тринистор можно представить как ключ, пропускающий ток в течение некоторой части периода синусоидального напряжения. Вводя задержку на открывание этого ключа, мы тем самым изменяем среднее значение тока, протекающего через нагрузку.

На элементах VT1, VT2 собран аналог однопереходного транзистора, управляющего работой силового тринистора VD. Запирающее напряжение подается на базу транзистора VT1 с делителя напряжения, образованного элементами R1. R4. Элементы R5, R6 и С1 образуют фазосдвигающую цепь. Изменяя сопротивление резистора R6, можно изменять время заряда конденсатора С1 до значения запирающего напряжения и тем самым регулировать задержку на включение тринистора VD. Таким образом происходит регулирование мощности в нагрузке.

Читайте так же:
Правильный ремонт и регулировка карбюратора

Сопротивление резистора R5 задает верхнее значение выходного напряжения. Поэтому сопротивление резистора R5 выбирают в пределах 5,1— 20 кОм. Следует иметь в виду, что, увеличивая сопротивление R5, мы уменьшаем максимальное значение выходного напряжения.
Сопротивление переменного резистора R6 можно увеличить до 220 кОм. При этом глубина регулировки в сторону уменьшения возрастает, но максимальное значение напряжения не изменяется.

Защита от токовых перегрузок при включении регулятора в сеть обеспечивается введением в цепь делителя напряжения, задающего пороговое запирающее напряжение терморезистора R4, имеющего отрицательный температурный коэффициент сопротивления (ТКС). За счет тепловой инерции терморезистора пороговое запирающее напряжение, подаваемое на базу транзистора VT1, имеет максимальное значение в момент включения регулятора и плавно уменьшается по мере разогрева терморезистора током, протекающим через делитель напряжения. Соответственно выходное напряжение в первый момент после включения имеет минимальное значение и плавно возрастает в течение промежутка времени, определяемого тепловой инерцией терморезистора (как правило, 0,5. 1 с), стремясь к установившемуся значению. При этом нагрузка и силовые элементы регулятора оказываются надежно защищенными от экстратоков включения. Следует отметить, что эффективность защиты повышается, если вместо одного терморезистора включить последовательно 2. 3 идентичных. Номиналы остальных элементов схемы в этом случае не изменяются.

В регуляторе использованы следующие элементы: конденсатор С1 типа МБМ на рабочее напряжение не ниже 160 В, постоянные резисторы типа МЛТ, переменный резистор типа СПЗ-12а, СПЗ-6 и аналогичные (допускается применеиие подстроечных резисторов типа СПЗ-1а, СПЗ-1б). Вместо терморезистора Т8М можно применить любые терморезисторы из серий Т8, Т9 (при этом время выхода на режим будет несколько отличаться от указанного).

В качестве трансформатора Т можно использовать готовые типа ТН-54 (максимальный выходной ток 5 А), ТН-58 (выходной ток не более 6 А), у которых выводы вторичных обмоток 9—10, 11— 12, 14—15 можно соединять последовательно для получения нужного коэффициента трансформации. Кроме того, не исключено применение трансформаторов типа ТПП. Можно изготовить трансформатор и самостоятельно по описаниям, приведенным в журнале «Радио» № 1 за 1980 год и № 4 за 1984 год, а также в сборнике «В помощь радиолюбителю», выпуск 84. При этом надо иметь в виду, что расчетная мощность трансформатора не должна превышать 150 Вт.

В качестве диодного блока В можно применить КЦ405А, Б, а также КЦ402А-В. Вместо указанных на схеме транзисторов вполне подходят: VT1—МП21 с индексами В-Е, МП26; VT2-КТ315 с любым буквенным индексом. Тринистор VD может быть типа КУ201Л. Выключатель 5 — любой сетевой на напряжение не ниже 250 В и ток не менее 2 А (можно использовать тумблер ТВ1-1).

Для электропитания обычных сетевых устройств, рассчитанных на напряжение 220 В мощностью до 200 Вт (например, ламп накаливания, электронагревательных приборов и т. п.) регулятор можно использовать в бестрансформаторном варианте. Трансформатор Т исключают из схемы, а нагрузку включают вместо первичной обмотки W1. При этом гальваническое разделение от сети отсутствует, однако защитные свойства схемы от перегрузок при включении полностью сохраняются.

Регулируем напряжение

Иногда требуется регулировать напряжение не от нуля до максимума, а в сравнительно небольших пределах изменения. Один из вариантов регулятора, позволяющего регулировать напряжение в диапазоне 160. 220 В, приведен на рисунке 2 (имеется в виду действующее значение напряжения, определяющее тепловой эффект электрического тока). Эта схема (рис. 2) во многом аналогична предыдущей. Но есть и отличие: форма напряжения в нагрузке имеет ярко выраженную несимметрию. Поэтому в качестве нагрузки нельзя использовать устройства с большой индуктивностью. Область применения данного регулятора — электропитание нагревательных и осветительных приборов мощностью до 400 Вт (при этом допускается применение диодов типа КД202 с индексами К-Р).

В приведенных выше схемах для защиты от токовых бросков при включении регуляторов использованы терморезисторы. У радиолюбителей, особенно начинающих, могут возникнуть трудности с их приобретением. В этом случае резистор R4 можно просто исключить из схемы (соединив нижний вывод резистора RЗ с «минусом» регулятора), оставив номиналы остальных элементов прежними. Тогда устройство будет работать аналогично обычному тиристорному регулятору напряжения.

Регулируем напряжение

Регулятор, схема которого приведена на рисунке 3, содержит всего несколько деталей. С его помощью можно увеличить напряжение без трансформаторов. КПД такого регулятора весьма высок и достигает 98 процентов. Но надо иметь в виду, что на выходе регулятора действует практически постоянное напряжение. По сути дела, регулятор представляет собой выпрямитель с фильтром. Эффект повышения напряжения обусловлен зарядкой конденсаторов. Таким образом, прибор работает исключительно с активной нагрузкой, мощность которой может достигать 600 Вт.

Читайте так же:
Как отрегулировать тормоза на мотоблоке

Регулятор обеспечивает ступенчатую регулировку выходного напряжения. Количество ступеней можно изменить, подключив дополнительные конденсаторы. Максимальный коэффициент увеличения действующего значения напряжения на выходе прибора по сравнению со входом зависит от соотношения суммарной емкости подключенных конденсаторов и сопротивления нагрузки. При указанных номиналах он может достигать 1,2. 1,4.

Предлагаемый регулятор удобно использовать как приставку к электропаяльнику. Он также может быть полезен при фотографических работах с искусственным освещением: вся подготовительная часть пройдет при обычном напряжении, а в момент съемки оперативно включают форсированный режим питания ламп. В этом случае резко увеличивается светоотдача электроламп накаливания (до 2. 2,5 раза) и улучшаются спектральные характеристики — «белизна» света, или, как говорят, повышается «цветовая температура» ламп.

В схеме регулятора допускается использовать диоды серни КД202 с индексами К-Р, конденсаторы типа К50-7 на рабочее напряжение 450 В. Выключатели S1-S3 — любые сетевые, рассчитанные на ток не менее 1 А.

Все описанные регуляторы при исправных элементах начинают работать сразу, без наладки.

Регулируемый блок питания.

Регулируемый блок питания — это устройство с регулировкой напряжения и тока, которое осуществляет питание различных электронных устройств. Такой прибор можно сделать самостоятельно. Раньше переделку компьютерных блоков питания производили с использованием блоков АТХ, собранных на микросхемах TL494. Однако такие типы блоков сейчас не встречаются, поэтому регулируемый блок питания собирается на более специализированных микросхемах, регулировку напряжения и тока с нуля на которых сделать сложнее. Для создания устройства можно взять старый блок питания типа AT на 200W.

Регулируемый блок питанияРегулируемый блок питания

Регулирующий блок питания своими руками.

1. Требуется вмонтировать плату зарядного устройства от мобильного телефона (Nokia AC-12E с доработкой), хотя использовать можно и другие зарядные устройства.

Регулирующий блок питания своими руками

Чтобы выполнить доработку, нужно перемотать III обмотки трансформатора, а также установить дополнительный конденсатор и диод. Для питания вольтметра-амперметра и вентилятора блок после переделки стал выдавать напряжения +8V.

Регулирующий блок питания своими рукамиРегулирующий блок питания своими руками

2. Необходимо выпаять с платы блока АТ детали цепи регулировки выходного напряжения и самозапуска первичной цепи, а также удалить все вторичные выпрямители.

Регулирующий блок питания своими руками, схема

Еще потребуется переделка выходного выпрямителя (по мостовой схеме) и перемотка дросселя — диаметр кольца 27 мм. Лампа накаливания 26V 0,12A применяется в качестве нелинейной нагрузки, поскольку с ней хорошо регулируются от нуля ток и напряжение.

Для устойчивой работы микросхемы нужно изменить цепи коррекции. Необходимо применить особое подключение потенциометров, для точной и грубой регулировок тока и напряжения. При таком подключении можно в любом месте и при любом положении потенциометра грубой регулировки плавно измерять ток и напряжение.

Непосредственно к выводам шунта должны подключаться провода для измерения и регулировки, поскольку невелико снимаемое с него напряжение.

С помощью резисторов R38, R39 и R40 подбирается верхний предел установки напряжения, а резистором R13 — верхний предел установки тока регулируемого блока питания.

Регулируемый блок питания своими руками - резисторы R38, R39 и R40Регулируемый блок питания своими руками - резистор R13

3. Вольтметр-амперметр применяется для измерения напряжения и тока.

Регулируемый блок питания своими руками - схема

За основу берется схема "Суперпростой амперметр и вольтметр на супердоступных деталях (автовыбор диапазона)". Регулировка баланса ОУ при измерении тока вводится в схему, это резко улучшает линейность. Потенциометр "Баланс ОУ" обозначен на схеме, с него напряжение поступает на инверсный или прямой входы. Программно реализован автоматический выбор диапазона измерения. Диапазон 1 до 9,99А (с указанием сотых долей ампера), диапазон 2 до 12А (с указанием десятых долей ампера).

Регулируемый блок питания своими рукамиРегулируемый блок питания своими руками

4. Программа для микроконтроллера пишется на СИ (mikroC PRO for PIC).

Как сделать регулируемый блок питания.

Чтобы правильно сделать регулируемый блок питания, необходимо все элементы размещаются конструктивно в корпусе блока АТ. На радиаторе с силовыми транзисторами закрепляется плата зарядного устройства. Убираются сетевые разъемы, а на их месте устанавливаются выходные зажимы и выключатель. На крышке блока сбоку расположены резисторы установки тока и напряжения, а также индикатор вольтметра-амперметра.

Не требуется переделка междукаскадного трансформатора блока AT. Также не переделывается выходной трансформатор блока АТ, но выходящий из катушки средний отвод отпаивается от платы и изолируется. Нужно заменить выпрямительные диоды на новые. Шнут можно взять от неисправного тестера, он закрепляется на изоляционных стойках на радиаторе с диодами.

Блок AT 200 W использовавшийся в качестве базового блока имеет маленький радиатор для силовых транзисторов. Так как вентилятор подключен к напряжению 8V, поэтому во избежание перегрева транзисторов, токи больше 6-7 ампер можно снимать только кратковременно.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector