Зачем менять фазы газораспределения
Зачем менять фазы газораспределения
Задача механизма газораспределения — обеспечить наивысшую эффективность наполнения и очистки цилиндра во время работы двигателя. От того, насколько грамотно подобраны фазы газораспределения, зависит экономичность мотора, мощность и развиваемый момент.
Качество работы двигателя — его КПД, мощность, крутящий момент и экономичность зависят от многих факторов, в том числе и от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов.
В обычном четырёхтактном двигателе внутреннего сгорания клапаны приводятся в действие кулачками распределительного вала. Профиль этих кулачков определяет момент и продолжительность открытия (то есть ширину фаз), а также величину хода клапанов.
В большинстве современных двигателей фазы меняться не могут. И работа таких двигателей не отличается высокой эффективностью. Дело в том, что характер поведения газов (горючей смеси и выхлопа) в цилиндре, а также во впускном и выпускном трактах меняется в зависимости от режимов работы двигателя. Постоянно изменяется скорость течения, возникают различного рода колебания упругой газовой среды, которые приводят к полезным резонансным или, наоборот, паразитным застойным явлениям. этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.
Так, например, для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.
При работе на максимальной мощности ситуация сильно меняется. С повышением оборотов время открытия клапанов закономерно сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать куда больший объём газов, нежели на холостом ходу. Как решить столь непростую задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими. При этом для лучшей продувки цилиндров фазу перекрытия обычно делают тем шире, чем выше обороты.
Так что при разработке и доводке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на сложные компромиссы. Посудите сами. С одними и теми же фиксированными фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным. Вот так задачка!
Но конструкторы такие задачи уже давно щёлкают как семечки и способны при помощи сдвига и изменения ширины фаз газораспределения менять характеристики двигателя до неузнаваемости. Поднять момент? Пожалуйста. Повысить мощность? Не вопрос. Снизить расход? Не проблема. Правда, подчас получается так, что при улучшении одних показателей приходится жертвовать другими.
А что если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя? Запросто. Благо способов для этого придумана масса. Один из них — применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. Наиболее часто такая система устанавливается на впуске. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.
Но неуёмные инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами. Например, в тойотовской системе после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.
Изменять момент и продолжительность открытия — это замечательно. А что если попробовать изменять высоту подъёма? Ведь такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм (ГРМ).
Чем вредна заслонка? Она ухудшает наполнение цилиндров на низких и средних оборотах. Ведь во впускном тракте под прикрытым дросселем при работе двигателя создаётся сильное разрежение. К чему оно приводит? К большой инертности разреженной газовой среды (топливовоздушной смеси), ухудшению качества наполнения цилиндра свежим зарядом, снижению отдачи и уменьшению скорости отклика на нажатие педали газа.
Поэтому идеальным вариантом было бы открывать впускной клапан только на время, необходимое для достижения нужного наполнения цилиндра горючей смесью. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. По разным данным, экономия от применения системы бездроссельного управления может составлять от 8% до 15%, прирост мощности и момента в пределах %. Но и это не последний рубеж.
Несмотря на то что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать ещё выше. За счёт чего? За счёт скорости открытия клапанов. Правда, механический привод здесь сдаёт позиции электромагнитному.
В чём ещё плюс электромагнитного привода? В том, что закон (ускорение в каждый момент времени) подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно прописанной программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Зачем? В целях экономии, например, на холостом ходу, при движении в установившемся режиме или при торможении двигателем. Да что режимы — прямо во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный. Интересно, скоро ли появятся такие системы на конвейере?
Пожалуй, дальнейшее увеличение эффективности работы мотора за счёт ГРМ уже невозможно. Выжать ещё больше мощности и момента с того же объёма при меньшем расходе можно будет только с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия, других видов топлива. Но это — уже совсем другой разговор.
Что такое фазы газораспределения и как они работают
Отрезки времени от начала момента открытия клапанов двигателя до их полного закрытия относительно мертвых точек движения поршня получили наименование фазы газораспределения. Их влияние на работу двигателя очень велико. Так, от продолжительности фаз зависит эффективность заполнения и очистки цилиндров в процессе работы мотора. Это напрямую определяет экономичность расхода топлива, мощность и крутящий момент.
Сущность и роль фаз газораспределения
На данный момент существуют двигатели, в которых фазы не могут изменяться принудительно, и двигатели, оснащенные механизмами изменения фаз газораспределения (например, CVVT). Для первого типа двигателей фазы подбираются эксперементально при конструировании и расчете силового агрегата.
Визуально все они отображаются на специальных диаграммах фаз газораспределения. Верхняя и нижняя мертвые точки (ВМТ и НМТ соответственно) представляют собой крайние позиции поршня, движущегося в цилиндре, которые соответствуют наибольшему и наименьшему расстоянию между произвольной точкой поршня и осью вращения коленвала мотора. Точки начала открытия и закрытия клапанов (длина фазы) показываются в градусах и рассматриваются относительно вращения коленчатого вала.
Управление фазами осуществляется при помощи газораспределительного механизма (ГРМ), который состоит из следующих элементов:
- кулачковый распредвал (один или два); ;
- цепной или ременной привод от коленвала к распредвалу.
Рабочий цикл двигателя всегда состоит из тактов, каждому из которых соответствует определенное положение клапанов на впуске и выпуске. Таким образом, начало и конец фазы зависят от угла положения коленвала, который связан с распределительным валом, управляющим положением клапанов.
За один оборот распредвала коленчатый вал выполняет два оборота и его суммарный угол поворота за рабочий цикл равен 720°.
Работу фаз газораспределения для четырехтактного двигателя рассмотрим на следующем примере (см. картинку):
- Впуск. На этом этапе поршень движется от ВМТ к НМТ, а коленвал поворачивается на 180º. Осуществляется закрытие выпускного клапана и последующее открытие впускного. Последние происходит с опережением на 12º.
- Сжатие. Поршень перемещается от НМТ к ВМТ, а коленвал совершает еще один поворот на 180º (360º от начального положения). Выпускной клапан остается в закрытом положении, а впускной остается открытым, пока коленвал не повернется на 40º.
- Рабочий ход. Поршень идет от ВМТ к НМТ под действием силы воспламенения топливовоздушной смеси. Впускной клапан находится в закрытом положении, а выпускной открывается с опережением, когда коленвал еще не дошел 42º до НМТ. На этом такте полный поворот коленвала составляет также 180º (540º от начального положения).
- Выпуск. Поршень идет от НМТ к ВМТ и при этом выталкивает отработавшие газы. В этот момент впускной клапан закрыт (откроется за 12º до ВМТ), а выпускной остается в открытом положении и после достижения коленвалом ВМТ еще на 10º. Общая величина поворота коленвала на этом такте также 180º (720º от начальной точки).
Фазы грм также зависят от профиля и позиции кулачков распредвала. Так, если они одинаковы на впуске и выпуске, то длительность открытия клапанов также будет одинакова.
Почему выполняется запаздывание и опережение срабатывания клапанов?
Чтобы улучшить наполнение цилиндров, а также обеспечить более интенсивную очистку от отработавших газов, срабатывание клапанов происходит не в момент достижения поршня мертвых точек, а с небольшим опережением или запаздыванием. Так, открытие впускного клапана выполняется до момента прохождения поршнем ВМТ (от 5° до 30°). Это позволяет обеспечить более интенсивное нагнетание свежего заряда в камеру сгорания. В свою очередь, закрытие впускного клапана происходит с запаздыванием (после того как поршень достиг нижней мертвой точки), что позволяет продолжить наполнение цилиндра горючим за счет сил инерции, так называемый инерционный наддув.
Выпускной клапан также открывается с опережением (от 40° до 80°) до момента достижения поршнем НМТ, что позволяет обеспечить выход большей части отработавших газов под действием собственного давления. Закрытие выпускного клапана, напротив, происходит с запаздыванием (после прохождения поршнем верхней мертвой точки), что позволяет силам инерции продолжить удаление отработавших газов из полости цилиндра и делает более эффективной его очистку.
Углы опережения и запаздывания не являются общими для всех двигателей. Более мощные и быстроходные имеют большие значения этих интервалов. Таким образом, их фазы газораспределения будут шире.
Этап работы двигателя, при котором оба клапана открыты одновременно, получил название перекрытие клапанов. Как правило, величина перекрытия составляет около 10°. При этом, поскольку длительность перекрытия очень мала, а раскрытие клапанов незначительно, утечки не происходит. Это довольно благоприятный этап для наполнения и очистки цилиндров, что особенно важно при высоких оборотах.
В начале открытия впускного клапана текущий уровень давления в камере сгорания выше, чем атмосферное. В результате отработавшие газы очень быстро перемещаются к выпускному клапану. Когда двигатель перейдет на такт впуска, в камере установится высокое разрежение, выпускной клапан полностью закроется, а впускной раскроется на достаточную для интенсивного наполнения цилиндра величину сечения.
Особенности регулируемых фаз газораспределения
При высоких скоростях двигателю автомобиля необходимо больше объема воздуха. И поскольку в нерегулируемых ГРМ клапаны могут закрыться до того, как в камеру сгорания поступает его достаточное количество, работа мотора оказывается неэффективной. Для решения этой проблемы были разработаны различные способы регулировки фаз газораспределения.
Первые моторы, имеющие подобную функцию, позволяли выполнять ступенчатую регулировку, которая позволяла менять длину фазы в зависимости от достижения двигателем определенных величин. Со временем появились бесступенчатые конструкции, позволяющие выполнить более плавную и оптимальную настройку.
Простейшим решением является система сдвига фаз (CVVT), реализуемая путем поворота распределительного вала относительно коленвала на определенный угол. Это позволяет изменить момент открытия и закрытия клапанов, но фактическая продолжительность фазы остается неизменной.
Чтобы изменить непосредственно длительность фазы, в ряде автомобилей используются несколько кулачковых механизмов, а также колеблющиеся кулачки. Для точной работы регуляторов применяются комплексы из датчиков, контроллера и исполнительных механизмов. Управление такими устройствами может быть электрическим или гидравлическим.
Одной из основных причин внедрения систем с регулировкой ГРМ является ужесточение экологических стандартов по уровню токсичности отработавших газов. Это означает, что для большинства производителей вопрос оптимизации фаз газораспределения остается одним из важнейших.
Как настроить внутривальный электродвигатель на рольставне
Основная масса от всех производимых внутривальных двигателей устроена с концевиками под ключ-шестигранник.
Кнопочные двигатели
Также есть небольшая масса двигателей, у которых выставляются концевики с помощью кнопок. То есть, при нажатии двигатель вращается, а при отжатии он запоминает крайнюю точку. Там есть кнопки верх и вниз, в зависимости, с какой стороны двигатель стоит у вас.
Двигатели с проводами
Также есть ещё некоторые двигатели, которые настраиваются с помощью специальных проводов. В них концевики встроены внутрь двигателя. И с помощью провода они программируются. Но можно не мучаться самому, а заказать установку рольставен в туалет в Москве. Но большинство двигателей всё же регулируется с помощью ключа-шестигранника. Этот вариант и рассмотрим в нашей статье.
Плюс/минус
На пластиковой части внутри короба показана стрелочка вверх. И соответственно, сам двигатель вращается в этом же направлении. Это означает, что верхний шестигранник настроен на опускание, а нижний — на поднимание. Также указаны плюс либо минус. Плюс — обороты добавляются, минус — уменьшаются.
Настройка
Если вы полотно забросили, двигатель прокрутили вниз до конца и он остановился, полотно нужно зацепить к валу, поднять его наверх. Если полотно не докручивается, то нужно крутить «плюс». Если перекручивается — опустить полотно снова вниз, прокрутить «минус». Крутить плюс или минус нужно до тех пор, пока полотно не остановится внутри направляющих. Когда оно остановилось, держите кнопку вверх и докручивайте «плюсик». Таким образом рольставни и жалюзи постепенно рывками поднимутся.
Можно регулировать более точно — чуть-чуть подкрутить, опустить полотно вниз-вверх и концевая планка будет останавливаться в нужном положении.
Регулировка и закрепление полотна
После того, как двигатель прокручен до конца вниз, используйте тот способ управления, который имеется у вас — специальный настроечный кабель; выключатель, подсоединённый через провод для рольставен; исполнительное устройство и т.п. и прокрутите двигатель вниз. Когда он достигнет конечного положения, двигатель сам остановится. Дальше зафиксируйте полотно к валу, в зависимости от вашего вида фиксации:
- Если используется блокирующий ригель, то он фиксируется с помощью колец.
- Если фиксирующий профиль — то при помощи саморезов и клёпок.
- Если — пружины тяговые, то они просто вставляются в щели на двигатели (усики поджимаются, вставляются в отверстие и фиксируется полотно).
Верхнее концевое положение полотна
После манипуляций, приведённых выше, поднимаете полотно вверх до конца, пока двигатель сам не остановится. Если полотно не доехало до конца, покрутите шестигранник, который отвечает за подъём. При этом удерживайте поднимающую кнопку. Таким образом, добавляя плюсик, вы смещаете запомненное ранее концевое положение у двигателя.
Сколько оставлять
Для запоминания концевого положения двигателя оставляйте одну-полторы ламели, для наилучшей работы роллеты и для того, чтобы полотно под собственным весом нормально опускалось вниз.
Проверка работы двигателя
После этой настройки, необходимо прогнать конструкцию вверх-вниз несколько раз для того, чтобы проверить её работу — не цепляется ли она, не сбились ли концевики, хорошо ли закреплены тяговые пружины (профиль, ригеля).
Нижнее концевое положение полотна
Если полотно не доходит до конца, снова прокручиваете шестигранник, удерживая кнопку, чтобы двигатель запомнил нижнее концевой положение роллеты.
Окончательная проверка
Прокрутите полотно вверх-вниз два-три раза, чтобы удостовериться в правильности его работы. После чего закройте короб и дальше пользуйтесь рольставнями в своё удовольствие. Или купите рулонные шторы в Москве, для более комфортной эксплуатации.
Шаговые двигатели и моторы Ардуино 28BYJ-48 с драйвером ULN2003
В этой статье мы поговорим о шаговых двигателях в проектах Ардуино на примере очень популярной модели 28BYJ-48. Так же как и сервоприводы, шаговые моторы являются крайне важным элементом автоматизированных систем и робототехники. Их можно найти во многих устройствах рядом: от CD-привода до 3D-принтера или робота-манипулятора. В этой статье вы найдете описание схемы работы шаговых двигателей, пример подключения к Arduino с помощью драйверов на базе ULN2003 и примеры скетчей с использованием стандартной библиотеки Stepper.
Шаговый двигатель – принцип работы
Шаговый двигатель – это мотор, перемещающий свой вал в зависимости от заданных в программе микроконтроллера шагов и направления. Подобные устройства чаще всего используются в робототехнике, принтерах, манипуляторах, различных станках и прочих электронных приборах. Большим преимуществом шаговых двигателей над двигателями постоянного вращения является обеспечение точного углового позиционирования ротора. Также в шаговых двигателях имеется возможность быстрого старта, остановки, реверса.
Шаговый двигатель обеспечивает вращения ротора на заданный угол при соответствующем управляющем сигнале. Благодаря этому можно контролировать положение узлов механизмов и выходить в заданную позицию. Работа двигателя осуществляется следующим образом – в центральном вале имеется ряд магнитов и несколько катушек. При подаче питания создается магнитное поле, которое воздействует на магниты и заставляет вал вращаться. Такие параметры как угол поворота (шаги), направление движения задаются в программе для микроконтроллера.
Основные виды шаговых моторов:
- Двигатели с переменными магнитами (применяются довольно редко);
- Двигатели с постоянными магнитами;
- Гибридные двигатели (более сложные в изготовлении, стоят дороже, но являются самым распространенным видом шаговых двигателей).
Где купить шаговый двигатель
Самые простые двигатели Варианты на сайте AliExpress:
Драйвер для управления шаговым двигателем
Драйвер – это устройство, которое связывает контроллер и шаговый двигатель. Для управления биполярным шаговым двигателем чаще всего используется драйверы L298N и ULN2003.
Работа двигателя в биполярном режиме имеет несколько преимуществ:
- Увеличение крутящего момента на 40% по сравнению с униполярными двигателями;
- Возможность применения двигателей с любой конфигурацией фазной обмотки.
Но существенным минусов в биполярном режиме является сложность самого драйвера. Драйвер униполярного привода требует всего 4 транзисторных ключа, для обеспечения работы драйвера биполярного привода требуется более сложная схема. С каждой обмоткой отдельно нужно проводить различные действия – подключение к источнику питания, отключение. Для такой коммутации используется схема-мост с четырьмя ключами.
Драйвер шагового двигателя на базе L298N
Этот мостовой драйвер управляет двигателем с током до 2 А и питанием до 46В. Модуль на основе драйвера L298N состоит из микросхемы L298N, системы охлаждения, клеммных колодок, разъемов для подключения сигналов, стабилизатора напряжения и защитных диодов.
Драйвер шагового двигателя ULN2003
Шаговые двигателями с модулями драйверов на базе ULN2003 – частые гости в мастерских Ардуино благодаря своей дешевизне и доступности. Как правило, за это приходится платить не очень высокой надежностью и точностью.
Другие драйвера
Существует другой вид драйверов – STEP/DIR драйверы. Это аппаратные модули, которые работают по протоколу STEP/DIR для связи с микроконтроллером. STEP/DIR драйверы расширяют возможности:
- Они позволяют стабилизировать фазные токи;
- Возможность установки микрошагового режима;
- Обеспечение защиты ключа от замыкания;
- Защита от перегрева;
- Оптоизоляция сигнала управления, высокая защищенность от помех.
В STEP/DIR драйверах используется 3 сигнала:
- STEP – импульс, который инициирует поворот на шаг/часть шага в зависимости от режима. От частоты следования импульсов будет определяться скорость вращения двигателя.
- DIR – сигнал, который задает направление вращения. Обычно при подаче высокого сигнала производится вращение по часовой стрелке. Этот тип сигнала формируется перед импульсом STEP.
- ENABLE – разрешение/запрет работы драйвера. С помощью этого сигнала можно остановить работу двигателя в режиме без тока удержания.
Одним из самых недорогих STEP/DIR драйверов является модуль TB6560-V2. Этот драйвер обеспечивает все необходимые функции и режимы.
Подключение шагового двигателя к Ардуино
Подключение будет рассмотрено на примере униполярного двигателя 28BYj-48 и драйверов L298 и ULN2003. В качестве платы будет использоваться Arduino Uno.
Еще один вариант схемы с использованием L298:
Схема подключения на базе ULN2003 изображена на рисунке ниже. Управляющие выходы с драйвера IN1-IN4 подключаются к любым цифровым контактам на Ардуино. В данном случае используются цифровые контакты 8-11. Питание подключается к 5В. Также для двигателя желательно использовать отдельный источник питания, чтобы не перегрелась плата Ардуино.
Принципиальная схема подключения.
Еще одна схема подключения биполярного шагового двигателя Nema17 через драйвер L298 выглядит следующим образом.
Обзор основных моделей шаговых двигателей для ардуино
Nema 17 – биполярный шаговый двигатель, который чаще всего используется в 3D принтерах и ЧПУ станках. Серия 170хHSхххА мотора является универсальной.
Основные характеристики двигателя:
- Угловой шаг 1,8°, то есть на 1 оборот приходится 200 шагов;
- Двигатель – двухфазный;
- Рабочие температуры от -20С до 85С;
- Номинальный ток 1,7А;
- Момент удержания 2,8 кг х см;
- Оснащен фланцем 42 мм для легкого и качественного монтажа;
- Высокий крутящий момент – 5,5 кг х см.
28BYJ-48 – униполярный шаговый двигатель. Используется в небольших проектах роботов, сервоприводных устройствах, радиоуправляемых приборах.
- Номинальное питание – 5В;
- 4-х фазный двигатель, 5 проводов;
- Число шагов: 64;
- Угол шага 5,625°;
- Скорость вращения: 15 оборотов в секунду
- Крутящий момент 450 г/сантиметр;
- Сопротивление постоянного тока 50Ω ± 7% (25 ℃).
Описание библиотеки для работы с шаговым двигателем
В среде разработки Ардуино IDE существует стандартная библиотека Strepper.h для написания программ шаговых двигателей. Основные функции в этой библиотеке:
- Stepper(количество шагов, номера контактов). Эта функция создает объект Stepper, которая соответствует подключенному к плате Ардуино двигателю. Аргумент – контакты на плате, к которым подключается двигатель, и количество шагов, которые совершаются для полного оборота вокруг своей оси. Информацию о количестве шагов можно посмотреть в документации к мотору. Вместо количества шагов может быть указан угол, который составляет один шаг. Для определения числа шагов, нужно разделить 360 градусов на это число.
- Set Speed(long rpms) – функция, в которой указывается скорость вращения. Аргументом является положительное целое число, в котором указано количество оборотов в минуту. Задается после функции Step().
- Step(Steps) –поворот на указанное количество шагов. Аргументом может быть либо положительное число – поворот двигателя по часовой стрелке, либо отрицательное – против часовой стрелки.
Пример скетча для управления
В наборе примеров библиотеки Stepper.h существует программа stepper_oneRevolution, в которой задаются все параметры для шагового двигателя – количество шагов, скорость, поворот.
Заключение
В этой статье мы с вами узнали, что такое шаговый двигатель, как можно его подключить к ардуино, что такое драйвер шагового двигателя. Мы также рассмотрели пример написания скетча, использующего встроенную библиотеку Stepper. Как видим, ничего особенно сложного в работе с шаговыми моторами нет и мы рекомендуем вам обязательно поэкспериментировать самостоятельно и попробовать включить его в своих проектах Arduino.
Поворот двигателя для регулировки
Задача 1 Проехать ровно 30 см.
Определим, на какое расстояние проедет робот за один оборот колеса?
Представим упрощенную модель колеса: окружность
Диаметр окружности – отрезок, соединяющий две точки окружности и проходящий через ее центр. Обозначим буквой d длину этого отрезка.
Если растянуть окружность в одну линию, то получится отрезок, длина которого L
Длину окружности можно рассчитать по формуле: , где
— (произносится «пи» ) — математическая постоянная величина, выражающая отношение длины окружности к длине её диаметра.
Попробуйте взять линейку и измерить диаметр колеса. У вас должно получиться число, близкое к 5.6 см. На самом деле диаметр и ширина колеса указаны на шине: 56*26, где 56 мм =5.6 см – длина, 26 мм=2.6 см – ширина.
Чтобы рассчитать, сколько оборотов должно совершить колесо, чтобы проехать на заданное расстояние, необходимо это расстояние разделить на длину дуги
В сервомоторе имеется встроенный датчик угла поворота в градусах, с помощью которого можно управлять точностью движения робота.
Один оборот колеса составляет угол поворота датчика — 360°
Чтобы точно рассчитать расстояние, на которое проедет робот, надо определить угол поворота датчика в градусах:
Как угол задать в программе? Для этого будем использовать два раздела:
Теперь в программе надо включить оба мотора со средней скоростью 3 и остановить их, когда датчик угла поворота превысит рассчитанное в функции значение GR
Подключим датчик угла поворота с А, подключим любой порт (В или С), установим требуемое значение с помощью модификатора:
Получим готовую программу:
Меняя в этой программе значение R , будем заставлять робота двигаться вперед на заданное расстояние.
Задача 2 Повернуть робота на заданный угол 90°
Чтобы повернуть на заданный угол, надо учитывать и расстояние между колесами — T , так как одно колесо стоит, а второе движется по кругу:
Угол, образованный двумя радиусами называется центральным. Длина дуги, которую должно описать колесо пропорционально ее радиусу и величине центрального угла и рассчитывается по формуле:
Для создания программы также воспользуемся функцией и датчиком угла поворота.
Поворот налево:
Поворот направо:
Задание для самостоятельной работы:
1) Бесконечное движение вперед-назад внутри замкнутого круга
2) Движение внутри квадрата
3) Движение по лабиринту.
С помощью рулетки измерьте расстояния и напишите программу движения робота: