Корректировка зажигания трамблером на ВАЗ 21083
Корректировка зажигания трамблером на ВАЗ 21083
В бесконтактной системе зажигания карбюраторного двигателя 21083 автомобиля ВАЗ 21083 (21093, 21099) предусмотрена возможность корректировки угла опережения зажигания (момента зажигания) при помощи трамблера.
Вращая трамблер (распределитель зажигания) в ту или иную стороны можно выставить более раннее или более позднее зажигание. Имея определенный опыт проведения этой корректировки можно с довольно большой точностью выставить начальный угол опережения зажигания не прибегая к помощи стробоскопа.
Помимо этого можно вращением трамблера подкорректировать зажигание под бензин с разным октановым числом (т.н. октан-корректор) тем самым предотвратив детонацию и снижение мощности двигателя.
Устройство для корректировки угла опережения зажигания
Для проведения корректировки момента зажигания на фланце трамблера имеется шкала с делениями и знаками плюс, минус. На корпусе вспомогательных агрегатов выполнен специальный выступ относительно которого эту шкалу можно перемещать. Цена одного деления 8 градусов поворота коленчатого вала. См. фото в начале статьи.
Для увеличения угла опережения зажигания (более раннее) необходимо вращать трамблер по часовой стрелки в сторону минуса на шкале. Для уменьшения (более позднее зажигание) поворачиваем против часовой стрелки в сторону плюса.
На некоторых модификациях распределителей зажигания нет обозначений плюс-минус.
Порядок установки начального угла опережения зажигания
Например, в ситуации, когда трамблер снимался с двигателя и теперь установлен обратно. При этом, как он стоял раньше и какое опережение зажигания должно быть ни кто не знает.
Выставляем коленчатый и распределительный валы по меткам
Совмещаем метку на шкиву распредвала и метку на задней крышке привода ГРМ.
Метки ГРМ двигателя 21083
Совмещаем метку на маховике и центр треугольного выреза на шкале в лючке картера сцепления.
Метка на маховике и треугольный вырез в шкале градусов двигателя 21083
Совмещаем середину шкалы на трамблере с выступом
Для вращения трамблера и совмещения необходимо чтобы гайки его крепления были ослаблены. Немного отвернуть их можно ключом на «10».
Ослабляем затяжку гаек крепления трамблера ключом на «10»
Прогреваем двигатель
При установке момента опережения зажигания двигатель должен быть прогрет. Поэтому запускаем его и прогреваем до рабочей температуры (80-90 гр). Если двигатель не работает на холостых, слегка прикрываем воздушную заслонку карбюратора вытянув на себя рукоятку «подсоса».
Устанавливаем необходимый угол опережения зажигания
Постепенно утапливаем «подсос» одновременно вращая корпус трамблера вправо-влево добиваясь устойчивой работы двигателя на холостых.
В итоге коленчатый вал двигателя должен вращаться в пределах 700-800 об/мин, воздушная заслонка карбюратора должна быть полностью открыта. При выполнении этих условий можно закрепить трамблер и провести проверку правильности установки момента опережения зажигания в движении автомобиля.
Для проверки правильности установки момента зажигания разгоняем автомобиль до 40-50 км/ч на ровном участке дороги. Резко нажимаем на педаль газа и слушаем звуки со стороны двигателя (детонацию). Если возник дробный стук и через несколько секунд исчез — зажигание выставлено правильно. Стука нет вовсе — зажигание слишком позднее. Стук постоянный и не прекращается — зажигание слишком раннее.
Для того чтобы наиболее точно выставить угол опережения зажигания необходим стробоскоп. Подробнее: «Установка угла опережения зажигания на ВАЗ 2108, 2109, 21099».
Порядок корректировки момента зажигания вращением трамблера (октан-корректор)
Например, в ситуации, когда на заправке был залит бензин с более низким октановым числом в результате чего двигатель перестал тянуть и появилась детонация (постоянный дробный стук со стороны двигателя при нажатии педали газа — «пальцы стучат»). Необходимо октан-корректором трамблера сделать зажигание чуть раньше (увеличить угол опережения зажигания).
Ослабляем крепление трамблера
Ключом на «10» немного отпускаем три гайки его крепления.
Вращаем трамблер
Руками поворачиваем трамблер по часовой стрелке на пол-деления (в сторону минуса на шкале). Угол опережения зажигания станет немного больше, зажигание раньше. Закрепляем его в таком положении затянув гайки.
Делаем зажигание раньше
Если, наоборот, нужно сделать зажигание позже и уменьшить угол опережения, вращаем трамблер против часовой стрелки (в сторону плюса).
Делаем угол опережения зажигания позже
Проверяем работу двигателя
Способом описанным выше.
Примечания и дополнения
Если распределитель зажигания (трамблер) будет сниматься с двигателя при проведении ремонтных работ, необходимо пометить взаимное расположение делений шкалы и выступа на корпусе вспомогательных агрегатов чтобы при обратной установки было меньше проблем с поиском оптимального угла опережения зажигания.
Блок зажигания на микроконтроллере
Несмотря на повсеместное распространение впрысковых (инжекторных) двигателей , где приготовлением топливной смеси и моментом зажигания управляет электроника, карбюраторные двигатели с механическим регулятором опережения зажигания , вероятно еще долго будут находиться в эксплуатации.
Как известно мощность, развиваемая двигателем, во многом зависит от того, на сколько угол опережения зажигания, формируемый центробежным и вакуумными регуляторами соответствует оптимальному углу опережения. (Тюфяков А. Система зажигания без секретов: Сб. Автомобилист -86-М.: ДОСААФ, 1986).
Тюфяков считает, что даже при условии нормальной работы центробежного регулятора двигатель теряет 5 -10 % мощности из-за того, что характеристика центробежного регулятора не соответствует оптимальной. Реально эти потери значительно больше:
- необходимо учесть различные люфты в приводе датчика-распределителя (трамблера);
- износ подшипника, на котором крепится прерыватель (или датчик Холла в бесконтактном варианте системы зажигания);
- изменение упругости пружин центробежного регулятора в процессе эксплуатации, его инерционность и т.д.
главное — невозможность при помощи простого механического устройства воспроизвести кривую зависимости УОЗ сначала по границе детонации ( до 2800 мин -1 ), а далее по кривой оптимального УОЗ ( кривые 2 и 4 на Рис.1)
Рис.1. График зависимости оптимального УОЗ из статьи А.Тюфякова "Зажигание без секретов".
1 — граница детонации для АИ-95.
2 — для АИ-92.
3 — для А-76.
4 — кривая оптимального УОЗ.
5,6,7 — характеристики центробежного регулятора при различном начальном УОЗ.
Для сокращения потерь мощности двигателя, вследствие указанных причин, были разработаны два устройства на микроконтроллерах.
Первое устройство формирует угол опережения зажигания в зависимости от частоты вращения коленчатого вала двигателя (Рис.2).
Кривая графика УОЗ в диапазоне от 830 до 2800 мин -1 проходит по границе детонации для бензина АИ — 92 и двигателя ВАЗ – 2101…ВАЗ- 2107. Далее кривая графика соответствует оптимальному углу опережения зажигания в диапазоне частот от 2800 мин -1 до 6000 мин -1 .
Рис.2
Расчет характеристики производился в Excel , по формулам из статьи Ю. Архипова “ ЦИФРОВОЙ РЕГУЛЯТОР УГЛА ОПЕРЕЖЕНИЯ ЗАЖИГАНИЯ“ (стр.129 -149) РАДИОЕЖЕГОДНИК за 1991год.
На основании данных расчета написана программа для микроконтроллера.
Программа использует данные о предыдущем периоде импульсов зажигания для расчета угла ОЗ в текущем периоде. Расчет УОЗ, на основе данных о периоде импульсов зажигания, позволяет использовать как прерыватель так и датчик Холла (незначительно изменив схему устройства не меняя программы ). Работа программы не зависит от скважности входных импульсов.
На Рис.3 — приведена принципиальная схема устройства для прерывателя ,а на Рис.4 — для датчика Холла.
Работает устройство следующим образом — импульсы с прерывателя, после ограничения до уровня 4,7в, поступают на вывод 6 микроконтроллера, если частота вращения коленчатого вала менее 830 мин -1 программа микроконтроллера устанавливает на выводе 17 , уровень напряжения такой же как на выводе 6 , т.е угол опережения равен 0 .
В случае отсутствия импульсов на входе устройства в течении 8 секунд ( постоянный 0й уровень на выводе 6) , программа устанавливает на выводе 17 высокий уровень , транзистор VT2 закрывается и катушка зажигания отключается .
При частоте более 830 мин -1 , программа формирует угол ОЗ в зависимости от периода импульсов зажигания в соответствии с графиком на Рис.2.
В качестве ключа (VT2 на Рис.3 или VT3 на Рис.4) применен транзистор КТ898А, который позволяет непосредственно коммутировать катушку зажигания Б117А .
Устройство собрано в корпусе от блока электронного зажигания. Транзистор КТ898А изолирован от корпуса блока прокладкой из слюды .
Сигнал на выводе 11 микроконтроллера можно использовать для включения пневмоклапана ЭПХХ, для этого необходимо дополнительно установить транзисторный ключ. Уровень логической 1 устанавливается на выводе 1, при снижении частоты вращения коленчатого вала до 1300 мин -1 .
Рис.3
Рис.4
При установке устройства на автомобиль блокируется работа центробежного регулятора — грузы центробежного регулятора должны быть зафиксированы любым удобным способом, автор сделал это при помощи скобок из проволоки вместо штатных пружин.
Начальный угол ОЗ должен быть равен “0”, и установлен по меткам на шкиве коленчатого вала и блоке цилиндров .Угол замкнутого состояния контактов прерывателя , желательно установить больше чем рекомендуют инструкции по эксплуатации – около 65 градусов вместо рекомендуемых 55 (для достижения больших максимальных оборотов) .
- Файл прошивки RUOZ+84.HEX
Формирователь угла опережения зажигания
Второе устройство формирует угол опережения зажигания в зависимости от частоты вращения коленчатого вала , и от разряжения во впускном коллекторе – в этом случае блокируются и центробежный и вакуумный регуляторы .
На Рис.5 приведены графики угла опережения зажигания, формируемые устройством .
Кривая “0,9в” формируется при минимальном разряжении (напряжение на входе аналого-цифрового преобразователя микроконтроллера равно 0,9в, дроссельная заслонка полностью открыта ), а кривая “0,6в” формируется при максимальном разрежении. График зависимости УОЗ, при 1/2 от максимального разрежения (кривая “0,75 в”), от 830 до 2800 мин-1, проходит по границе детонации для бензина АИ — 92 и двигателя ВАЗ – 2101…ВАЗ- 2107. Далее кривая графика соответствует оптимальному углу опережения зажигания в диапазоне частот от 2800 мин-1 до 6000 мин-1 . Кривая “0,75 в ” соответствует кривым 2 и 4 на графике из статьи Тюфякова (Рис. 1) .
Схемы регуляторов УОЗ приведены на Рис.6 и Рис.7 .
Программа , в части регулировки УОЗ в зависимости от частоты вращения коленчатого вала , полностью идентична программе первого устройства.
Здесь дополнительно введена подпрограмма коррекции формируемого УОЗ в зависимости от разряжения во впускном коллекторе двигателя . Диапазон регулировки УОЗ в зависимости от разряжения был определен в ходе испытания устройства на автомобиле .
Угол ОЗ корректируется в зависимости от напряжения на входе аналого-цифрового преобразователя ( вывод 8 PIC16F676 ) в соответствии с графиком на Рис.5 .
В программе так же предусмотрено ограничение диапазона регулирования угла ОЗ по разряжению. Угол ОЗ изменяется в пределах указанных на Рис.5 , даже если напряжение на входе АЦП будет меньше 0,6в или больше 0,9в .
Работа датчика разрежения — основана на изменении индуктивного сопротивления катушки L1, при вводе внутрь сердечника из феррита.
Датчик разрежения сделан из дополнительного вакуумного регулятора (штатный вакуумный регулятор оставлен на двигателе, тяга его зафиксирована и шланг отбора разрежения отключен). Шланг отбора разрежения для регулятора угла ОЗ на микроконтроллере , соединяется с патрубком отбора разряжения на карбюраторе .
Сердечник катушки L1 связан с тягой предварительно переделанного вакуумного регулятора. К тяге вакуумного регулятора прикреплен удлинитель (стержень из стеклотекстолита диаметром 7мм ), на котором закреплены 1-2 ферритовых кольца 7x10x12, являющиеся сердечником катушки L1. Ход тяги увеличен до 5,5-6мм. На катушку с вывода 3 микроконтроллера через R11
поступает переменное напряжение с частотой 1,0мгц и амплитудой около 4в. При втягивании сердечника в катушку увеличивается индуктивное сопротивление и следовательно напряжение на C3, это напряжение поступает на вход АЦП микроконтроллера.
Рис. 6.
Рис.7
Настройка устройства сводиться к установке на входе АЦП пределов изменения напряжения от 0,6в, при сердечнике вне катушки (максимальное разрежение во впускном коллекторе) до 0,9в при сердечнике, полностью введенном в катушку (минимальное разрежение). Это достигается подбором ферритовых колец (количества колец или марки феррита) и подбором резистора R8 на Рис.6 или R7 на Рис.7 .
Катушка L1 намотана на каркасе длиной 6мм и диаметром 12мм и имеет 80 -100 витков провода ПЭВ-0,2 .
Устройство собрано в металлическом корпусе от блока электронного зажигания, вакуумная камера регулятора закреплена снаружи корпуса, в корпусе просверлено отверстие для тяги вакуумного регулятора .Катушка L1
закреплена на плате устройства . Транзистор КТ898А изолирован от корпуса блока прокладкой из слюды . Ниже приведена “прошивка” микроконтроллера PIC16F676 .
В блоках зажигания не предусмотрена защита ключей на КТ898А от короткого замыкания . Оба устройства рассчитаны на работу с катушкой зажигания типа Б117А .
Результаты испытания устройств на автомобиле ВАЗ-21053 удовлетворили автора :
- Двигатель работает ровно, без пропусков зажигания на холостых оборотах.
- Увеличилась мощность на низких оборотах .
- Значительно улучшилась динамика разгона автомобиля, при разгоне двигатель уверенно набирает обороты, на педаль “газа” реагирует мгновенно, без былой “задумчивости”, исчез эффект “стенки “- когда сколько ни жми на “газ”- обороты не увеличиваются.
Далее приведен усовершенствованный вариант блока зажигания
В схему добавлена емкость C4 , которая входит в колебательный контур L1…C4 . (Рис.8)
Это упрощает настройку датчика разрежения .
Сначала добиваемся подбором C4 максимального напряжения на C3
(резонанса в контуре C4..L1 на частоте 1,0мгц ), при сердечнике полностью введенном в катушку (минимальное разрежение , дроссельная заслонка полностью открыта).
Затем резистором R8 устанавливаем диапазон изменения напряжения на входе АЦП ( от 0,6 – до 0,9в) соответственно при сердечнике вне катушки и сердечнике в катушке .
С этой схемой (Рис.8) можно использовать как старую прошивку так и новую.
В новую прошивку добавлены две команды калибровки тактового RC
генератора 4,0мгц
CALL 03FF
MOVWF OSCCAL
Если у вас новый микроконтроллер , то необходимо в окне Icprog 105D
прочитать содержимое ячейки памяти программ с адресом 03FF.
Там будет записано что-то вроде 34xx .Это значение необходимо сохранить и перед программированием заносить в эту же (03FF) ячейку .
Если не сделать этого, то программа не будет работать вообще (зациклиться).
В старой прошивке, команд калибровки нет, но и частота тактового генератора может отличаться от 4,0мгц на 7-10% .
- "НОВАЯ"прошивка (с калибровкой тактового генератора).
Проконтролировать работу системы зажигания можно при помощи устройства , которое позволяет измерить частоту вращения коленчатого вала двигателя , угол замкнутого состояния контактов прерывателя и угол опережения зажигания ,формируемый приведенными выше устройствами .
Тахометр , измеритель угла замкнутого состояния контактов прерывателя и измеритель угла опережения зажигания на PIC16F84A.
В данном устройстве при измерении частоты вращения вала двигателя , также как и в тахометре из “Радио” № 7 за 2004г. стр.45-46 ( автор А.Ульянов ) , используется метод измерения периода импульсов зажигания с дальнейшим пересчетом в мин-1 (Рис.8) .
Тахометр дополнен функцией измерения угла замкнутого состояния контактов прерывателя и угла опережения зажигания .
Основной режим устройства – режим тахометра , при нажатой кнопке “ УЗСК “ устройство измеряет угол замкнутого состояния контактов прерывателя (от 0 до 900 по углу поворота вала трамблера ) , при нажатой кнопке “ УОЗ “ , устройство измеряет угол опережения зажигания ( от 0 до 1800 по углу поворота коленчатого вала двигателя ), формируемый регулятором угла ОЗ на микроконтроллере .
Вывод показаний на светодиодный дисплей происходит посегментно (в каждый момент времени горит только один сегмент) , с гашением незначащих нулей , поэтому устройство потребляет ток всего около 30мА .
Тахометр-измеритель УЗСК – измеритель УОЗ , собран на самодельной плате из двухстороннего фольгированного стеклотекстолита , размер платы 33*55 мм , с одной стороны платы на предварительно нарезанных дорожках распаян светодиодный дисплей , на противоположной стороне контроллер и остальная часть схемы . Монтаж выполнен проводом МГТФ .
Тахометр подключается следующим образом : R3 к прерывателю , R6 к катодам VD3, VD4 (Рис.3) .
Работа устройства проверена на автомобиле ВАЗ-21053 .
- "Прошивка" для тахометра 3_oatax.HEX
PS. В настоящее время , на автомобиле автора работают устройства , приведенные на Рис.8 и Рис.9 .
Датчик Холла: принцип работы и особенности ремонта
Датчики в конструкции машины – своеобразные шпионы, которые сообщают головным узлам автомобиля ту или иную информацию, а последние в свою очередь, анализируя полученные данные, принимают решение относительно своей дальнейшей работы. Подобных шпионов в любом транспортном средстве установлено немало, однако и среди этих вспомогательных деталей выделяют некоторые основные. Так, датчик тока, основанный на эффекте Холла, участвует в работе многих систем автомобиля. Есть желание узнать о нём подробнее? Тогда обязательно ознакомьтесь с приведённой ниже статьёй, которая во всевозможных разрезах рассматривает линейный датчик Холла.
Принципы работы и устройство датчика Холла
Датчик любого вида устанавливается на автомобиль с одной целью: получение информации об одном из многочисленных параметров его работы. Какой-то идентификатор отвечает за определение температуры в двигателе, другой отслеживает количество расходуемого воздуха, а третий всегда готов ответить за положение того или иного узла мотора. Именно для достижения последней цели нужен датчик Холла, который беспрерывно следит за положением коленчатого или распределительного вала.
Принцип работы датчика Холла основан на применении гальваномагнитного явления, открытого в 1879 году Эдвином Холлом. Суть последнего заключается в том, что посредством интеграции некоторого полупроводника (датчика Холла) в электросистему с магнитным полем на его выводах возникает напряжение. При помощи измерения напряжённости магнитного поля в системе зажигания и получается определять углы расположения коленвала и распредвала машины, что крайне важно для грамотного формирования знаний о моменте искрообразования на данный момент времени. Благодаря своей специфике, магнитный датчик Холла применяется исключительно в бесконтактных системах с протекающим в них током (в случае с автосферой – в бесконтактных системах зажигания или, в сокращении, БСЗ).
Обобщая отмеченную выше информацию, стоит поэтапно рассмотреть то, как работает датчик Холла. Если обращать внимание на этот процесс максимально просто, то его сущность заключается в следующем:
- Аналоговый датчик Холла монтируется в систему зажигания автомобиля, что с точки зрения физики означает включение в электросеть (магнитное поле) дополнительного проводника. Уточняя этот момент, важно отметить, что устройство идентификатора предполагает использование высокотехнологичных проводников, которые позволяют не нарушать сопротивление и напряжение в цепи;
- В процессе работы мотора, а именно в моменты искрообразования в датчике Холла формируется некоторое напряжение, которое и необходимо для определения точного угла коленвала и распредвала в конкретный момент времени;
- После этого, выявленное изменение в магнитном поле системы зажигания автомобиля, передаётся на коммутатор, а затем отходит на иные узлы машины. Последние, к слову, основываясь на данном изменении в магнитном поле и расположении валов, могут принимать наиболее оптимальные решения в плане организации своей работы.
Возникновение и точная передача напряжения Холла через соответствующий датчик возможна благодаря уникальной схеме подключения последнего. Уникальность заключается в расположении датчика, который просто вмонтирован в электроцепь системы зажигания автомобиля и не нарушает работу таковой. Именно подобные характеристики идентификатора Холла позволяют ему оставаться наилучшим способом определения положения коленвала и распредвала мотора вот уже долгие годы.
Цифровой датчик Холла в конструкции автомобиля
Теперь, когда принципы работы, устройство датчика Холла и то, для чего он вообще нужен, стали более-менее понятны, можно углубиться в рассмотрение его функционирования именно в конструкции машины. Для начала обратим внимание на его физическое состояние. Большинство современных датчиков Холла, устанавливаемых на мотор, представляют собой составляющую трамблёра. Она устанавливается неподалёку от распредвала и имеет в своей конструкции магнитопроводящую пластину, с виду напоминающую корону. Последняя имеет n-ое количество прорезей (их число всегда равняется числу цилиндров двигателя), а также дополняется основой датчика тока на эффекте Холла – магнитом.
В процессе вращения распредвала его лопасти поочерёдно проходят прорези ранее отмеченной пластины датчика, что вызывает появления напряжения. Последнее формирует электрический импульс, передающийся сначала на коммутатор, а затем на катушку зажигания и другие электронные узлы автомобиля. В итоге, в системе зажигания с датчиком Холла он выполняет две основные функции:
- Запускает искрообразование на концах свечей зажигания посредством преобразования напряжения Холла в высокую напряжённость магнитного поля;
- Оповещает другие узлы автомобиля, которым требуется знать положение распредвала и коленвала, о таковом в данный момент времени.
Подобные характеристики узла делают из него довольно-таки важную составляющую системы зажигания, без правильной работы которой, функционирование мотора зачастую невозможно. Теперь, наверное, уже всем полностью понятно – зачем нужен этот пресловутый «холловский» идентификатор. Отметим, что данная деталь успешно применяется как на одноконтактных, так и двухконтурных системах зажигания. Более того, двухконтурное зажигание с одним датчиком Холла довольно-таки популярно.
Подключение датчика Холла предусматривает использование трёх клемм:
- первая идёт на «массу»;
- вторая — на плюс с входным напряжением порядка 6 Вольт;
- третья является «выходной» и отправляет преобразованное напряжение на коммутатор.
Распиновка у датчика простейшая и, как правило, не отличается от представленной ниже (то есть, провода датчика Холла зачастую подключаются по следующей схеме):
Вопросы по типу:
- Как проверить датчик Холла?
- Где находится датчик Холла?
- Как заменить датчик Холла?
- Как подключить датчик Холла?
- Как поменять его на новый?
Требуют от автомобилиста знаний того, как выглядит этот элемент системы зажигания, отвечающий за правильное искрообразование. К счастью, нужная деталь до безобразия проста как в ремонте, так и во внешнем виде. В типовом варианте датчик Холла, поставленный на абсолютно любой автомобиль, выглядит следующим образом:
Ремонт детали: симптомы неисправности и процедура замены
Замена датчика Холла – именно та операция, проведение которой может понадобиться в самый неподходящий момент. «Затроил» мотор, его плохой запуск, дал сбой карбюратор или инжектор, неисправен другой узел автомобиля – всё это может указывать на поломку именно «холловского» идентификатора. Увы, от этого не застраховаться, поэтому знать о возможных поломках детали и о том, как проводится установка Датчика Холла, желательно каждому автомобилисту.
В первую очередь, обратим внимание на признаки неисправности датчика Холла, в качестве которых могут выступать:
- плохой запуск или отказ в работе мотора;
- перебои в его функционировании на холостых оборотах;
- «дёрганье» машины на высоких оборотах;
- самопроизвольное глушение двигателя, повторяющиеся многократно;
- отказ функционирования от электроники инжектора, карбюратора или иных узлов автомобиля, работающих совместно с двигателем.
Безусловно, отмеченная выше симптоматика может проявляться и при неисправности других узлов машины, но зачастую виной всему именно поломанный датчик Холла. Тем более никто не мешает проверить его собственноручно. Спросите – «Как проверить датчик Холла на правильность функционирования?». Крайне просто! Для этого достаточно:
- Снять датчик с автомобиля;
- Замкнуть его выходы под номером 2 и 3 (минус и контакт с коммутатором);
- Проверить – появилась ли искра или нет. Если она есть и стабильно хорошая, то датчик неисправен. В ином случае стоит поискать проблему в другой составляющей системы зажигания.
Также имеется возможность проверки идентификатора Холла мультиметром. В этом случае нужно замерить напряжения на его выходах, которое в норме должно равняться от 0,4 до 11 Вольт. Естественно, при проверке датчика важно убедиться в исправности инжектора или карбюратора вашего автомобиля, ведь нередко проблемы с перебоями в работе мотора связаны именно с неисправностью элементов топливной системы.
Если узел неисправен, то следует провести соответствующий ремонт. Отметим, что замена датчика Холла особых сложностей не представляет и проводится не более 10-15 минут при соблюдении следующего порядка процедуры:
- Первоочерёдно автомобиль глушится, клеммы АКБ отключаются и снимается трамблёр зажигания;
- Отсоединив последний, демонтируется его крышка. На этом же этапе желательно совместить метки ГРМ и коленвала;
- После этого снимают вал трамблёра, а затем и датчик Холла. Далее остаётся лишь поставить новый идентификатор и собрать автомобиль в обратном порядке.
Внимание! Менять деталь важно исключительно на покупную. Стоит она недорого (не более 200-300 рублей для большинства марок автомобилей), поэтому говорить о сборке датчика Холла своими руками, наверное, бессмысленно.
На этом, пожалуй, по сегодняшней теме повествование можно завершать. Надеемся, представленный материал был для вас полезен и дал ответы на интересующие вопросы. Удачи на дорогах и в ремонте!
TSZi, TSZh
Принцип действия бесконтактной системы зажигания заключается в следующем: При включенном зажигании и вращающемся коленвале двигателя датчик-распределитель выдает импульсы напряжения на коммутатор, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания. В момент прерывания тока в первичной обмотке индуктируется ток высокого напряжения во вторичной обмотке. Ток высокого напряжения идет от катушки зажигания по проводу через угольный контакт на пластину ротора, и затем через клемму крышки распределителя по проводу высокого напряжения, в наконечнике которого установлен помехоподавительный экран, попадает на соответствующую свечу зажигания и воспламеняет рабочую смесь в цилиндре.
Наибольшее распространение получили магнитоэлектрические датчики — индукционные(системы с ними маркируются TSZi) и датчики Холла(системы с ними маркируются TSZh).
Система небезопасна и требует осторожности. Если, например, отсоединить провод от свечи — может «сгореть» коммутатор или распределитель.
Прежде, давайте разберём эти два датчика, что же они представляют из себя?
Индуктивный датчик
Работа индуктивного датчика положения основана на изменении индукции чувствительного элемента при изменении зазора между ним и ферромагнитным движущимся объектом.
Ферромагнитный объект — объект, обладающий ферромагнитными свойствами(т.е. оно активно притягивает к себе магнит и активно притягивается магнитом).
В индуктивном датчике имеются катушка из обмотки провода и магнит. В качестве сопряженной детали используется ротор, состоящий из пластин определенного размера.
1 – индуктивный датчик; 2 – пластины ротора
Каждый раз, когда пластина ротора проходит около датчика импульсов, изменяется магнитное поле, в результате чего в обмотке катушки индуцируется импульсное напряжение.
Индуктивный датчик вырабатывает сигнал, близкий к синусоидальному, поэтому его приходится преобразовывать в форму, более удобную для управления током в первичной обмотке (то есть сигнал датчика искусственно преобразуется в форму, близкую к прямоугольной, увеличивается крутизна фронта и спада, обрезается верхушка импульса и т.п.).
Датчик Холла
Магнитоэлектрический датчик Холла получил свое название по имени Э.Холла, американского физика, открывшего в 1879 г. важное гальваномагнитное явление.
Суть данного явления заключалась в следующем: Если на полупроводник, по которому (вдоль) протекает ток, воздействовать магнитным полем, то в нем возникает поперечная разность потенциалов (ЭДС Холла). Возникающая поперечная ЭДС может иметь напряжение только на 3 В меньше, чем напряжение питания.
а — нет магнитного поля, по полупроводнику протекает ток питания — АВ; б — под действием магнитного поля — Н появляется ЭДС Холла — ЕF; в — датчик Холла
Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны — постоянный магнит. В щель датчика входит стальной цилиндрический экран с прорезями. При вращении экрана, когда его прорези оказываются в щели датчика, магнитный поток воздействует на полупроводник с протекающим по нему током и управляющие импульсы датчика Холла подаются в коммутатор, в котором они преобразуются в импульсы тока в первичной обмотке катушки зажигания.
Датчик состоит из постоянного магнита(2), пластины полупроводника(3) и микросхемы. Между пластинкой(3) и магнитом(2) имеется зазор(4). В зазоре датчика находится стальной экран(1) с прорезями. Когда через зазор проходит прорезь экрана, то на пластинку полупроводника действует магнитное поле и с нее снимается разность потенциалов. Если же в зазоре находится тело экрана, то магнитные силовые линии замыкаются через экран и на пластинку не действуют. В этом случае разность потенциалов на пластинке не возникает.
Бесконтактные системы зажигания с индуктивным датчиком(TSZi).
1 — свечи зажигания; 2 — датчик-распределитель, 3 — коммутатор, 4 — катушка зажигания
Данные системы являются бесконтактными системами зажигания с нерегулируемым временем накопления энергии. Бесконтактная система зажигания с нерегулируемым временем накопления энергии принципиально отличается от контактно-транзисторной только тем, что в ней контактный прерыватель заменен бесконтактным датчиком. На рисунке ниже приведена электрическая схема системы:
Принцип работы: Сигнал с обмотки L магнитоэлектрического датчика через диод VD2, пропускающий только положительную полуволну напряжения, и резисторы R2, R3 поступает на базу транзистора VT1. Транзистор открывается, шунтирует переход база-эмиттер транзистора /Т2, который закрывается. Закрывается и транзистор VT3, ток в первичной обмотке катушки зажигания прерывается, и на выходе вторичной обмотки возникает высокое напряжение. В отрицательную полуволну напряжения транзистор VT1 закрыт, открыты VT2 и VT3, и ток начинает протекать через первичную обмотку Катушки возбуждения. Очевидно, что число пар полюсов датчика должно соответствовать числу цилиндров двигателя.
Цепь R3-C1 осуществляет фазосдвигающие функций, компенсирующие фазовое запаздывание протекания тока в базе транзистора VT1 из-за значительной индуктивности обмотки датчика L, чем снижается погрешность момента искрообразования.
Стабилитрон VD3 и резистор R4 защищают схему коммутатора от повышенного напряжения в аварийных режимах, так как, если напряжение в бортовой цепи превышает 18 В, цепочка начинает пропускать ток, транзистор VT1 открывается и закрывается выходной транзистор VT3. Цепями защиты от опасных импульсов напряжения служат конденсаторы СЗ, С4, С5, С6; диод VD4 защищает схему от изменения полярности бортовой сети. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.
Бесконтактные системы зажигания с датчиком Холла(TSZh)
1 — свечи зажигания; 2 — датчик-распредепитель; 3 — коммутатор; 4 — генератор; 5 — аккумуляторная батарея; 6 — монтажный блок; 7 — репе зажигания; 8 — катушка зажигания; 9 — датчик Холла
Данные системы являются системами зажигания с регулированием времени накопления энергии. Данная система зажигания пришла на смену TSZi, чтобы исправить 2 недостатка:
- Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.
- Уменьшение вторичного напряжения при росте частоты вращения коленчатого вала. Поэтому более перспективна система с регулированием времени накопления энергии.
В микросхеме коммутатора сигнал в блоке формирования периода, накопления энергии сначала инвертируется, затем интегрируется. На выходе интегратора образуется пикообразное напряжение, величина которого тем больше, чем меньше частота вращения двигателя. Это напряжение поступает на вход компаратора, на другой вход которого подано опорное напряжение. Компаратор преобразует величину напряжения во время. Сигнал на входе компаратора имеет место тогда, когда величина пилообразного напряжения достигает опорного и превышает его. При большой частоте вращения величина пилообразного напряжения мала, соответственно мала и длительность сигнала на выходе компаратора. С исчезновением выходного сигнала компаратора через схему управления открывается транзистор VT1, и первичная .цепь зажигания включается в сеть. Следовательно, время накопления энергии в катушке соответствует времени отсутствия сигнала на выходе компаратора. Уменьшение длительности выходного сигнала компаратора позволяет увеличить относительную величину времени накопления энергии и тем самым стабилизировать ее абсолютное значение.
Блок ограничения силы выходного тока срабатывает по сигналу, снимаемому с резисторов, включенных последовательно в первичную цепь зажигания. Если этот сигнал достигает уровня соответствующего силе тока 8 А, блок переводит выходной транзистор в активное состояние с фиксированием этой величины тока.
Блок безискровой отсечки отключает катушку зажигания в случае, если включено электропитание, но вал двигателя неподвижен. При этом, если при остановленном двигателе выходное напряжение датчика соответствует низкому уровню, катушка отключается сразу, в противном случае отключение происходит через 2 — 5 с.
Схема насыщена элементами защиты от всплесков напряжения и включения обратной полярности питания. Регулировка угла опережения зажигания осуществляется традиционными способами, т.е. центробежным и вакуумным регуляторами.
Общий принцип работы:
Давайте обобщим всё прочитанное. Не смотря на разность датчиков, системы схожи в построении и различаются внутренним устройством некоторых компонентов. Давайте взглянем на систему и опишем последовательно работу:
Итак, водитель поворачивает ключ в замке зажигания, тем самым замыкая цепь. Ток начинает поступать из аккумулятора по замкнутому замку зажигания.
Можно сказать, что питаниец цепи происходит по схеме Аккумулятор->Стартер->Генератор. При нахождении ключа в положении «стартер» замыкаются контакты 50 и 30. Электрический ток поступает на реле стартера. Там появляется магнитное поле, что приводит к тому, что бендикс стартера вводится в зацепление с шестернёй маховика. Включается электродвигатель стартера и он начинает крутит маховик. Тот в свою очередь начинает раскручиваться и при достижении скорости, большей чем допустимая скорость вращения вала шестерни стартера привод стартера выводит её из зацепления. В свою очередь, вращение коленчатого вала передаётся на вращение вала генератора, что в свою очередь приводит к выработке электрического тока на нём, который питает бортовую сеть автомобиля и подзаряжает аккумулятор.
1 — свечи зажигания; 2 — датчик-распределитель; 3 — распределитель; 4 — датчик импульсов; 5 — коммутатор; 6 — катушка зажигания; 7 — монтажный блок; 8 — реле зажигания; 9 — выключатель зажигания; А — к клемме генератора.
Электрический ток поступает на первичную обмотку катушки зажигания(6). Коммутатор, получая сигнал с датчика(4), прерывает или наоборот включает первичную обмотку. Когда протекание тока по первичной обмотке прерывается, то во вторичной обмотке вознекате ток высокого напряжение, который подаётся по высоковольтному проводу на распределитель. Распределитель, вал которого приводится в движение от шестерни привода масляного насоса или коленчатого вала(зависит от конкретного устройства двигателя) распределяет искру по свечам, тем самым воспламеняя смесь в нужном цилиндре двигателя в нужное время.