Cto-nk.ru

О Автосервисе доступно
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор оборотов электродвигателя 220в без потери мощности

Регулятор оборотов электродвигателя 220в без потери мощности


Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель. В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет. Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

Виды двигателей и принцип работы

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер. Его мощность значительно выше, чем у асинхронного, а цена довольно низкая. Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост. Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно. Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

Читайте так же:
Как регулировать тормоза на мтз

Регулирование скорости асинхронного двигателя

Наиболее распространены следующие способы регулирования скорости асинхронного двигателя : изменение дополнительного сопротивления цепи ротора, изменение напряжения, подводимого к обмотке статора, двигателя изменение частоты питающего напряжения, а также переключение числа пар полюсов.

Электрический двигатель

Регулирование частоты вращения асинхронного двигателя путем введения резисторов в цепь ротора

Введение резисторов в цепь ротора приводит к увеличению потерь мощности и снижению частоты вращения ротора двигателя за счет увеличения скольжения, поскольку n = n о (1 — s).

Из рис. 1 следует, что при увеличении сопротивления в цепи ротора при том же моменте частота вращения вала двигателя уменьшается.

Жесткость механических характеристик значительно снижается с уменьшением частоты вращения, что ограничивает диапазон регулирования до (2 — 3) : 1. Недостатком этого способа являются значительные потери энергии, которые пропорциональны скольжению. Такое регулирование возможно только для двигателя с фазным ротором.

Регулирование скорости асинхронного двигателяРегулирование частоты вращения асинхронного двигателя изменением напряжения на статоре

Изменение напряжения, подводимого к обмотке статора асинхронного двигателя , позволяет регулировать скорость с помощью относительно простых технических средств и схем управления. Для этого между сетью переменного тока со стандартным напряжением U 1ном и статором электродвигателя включается регулятор напряжения .

При регулировании частоты вращения асинхронного двигателя изменением напряжения, подводимого к обмотке статора, критический момент М кр асинхронного двигателя изменяется пропорционально квадрату подводимого к двигателю напряжения U рет (рис. 3 ), а скольжение от U рег не зависит.

Механические характеристики асинхронного двигателя с фазным ротором при различных сопротивлениях резисторов, включенных в цепь ротора

Рис. 1. Механические характеристики асинхронного двигателя с фазным ротором при различных сопротивлениях резисторов, включенных в цепь ротора

Схема регулирования скорости асинхронного двигателя путем изменения напряжения на статоре

Рис. 2. Схема регулирования скорости асинхронного двигателя путем изменения напряжения на статоре

Механические характеристики асинхронного двигателя при изменении напряжения подводимого к обмоткам статора

Рис. 3. Механические характеристики асинхронного двигателя при изменении напряжения подводимого к обмоткам статора

Если момент сопротивления рабочей машины больше пускового момента электродвигателя (Мс > Мпуск), то двигатель не будет вращаться, поэтому необходимо запустить его при номинальном напряжении Uном или на холостом ходу.

Регулировать частоту вращения короткозамкнутых асинхронных двигателей таким способом можно только при вентиляторном характере нагрузки. Кроме того, должны использоваться специальные электродвигатели с повышенным скольжением. Диапазон регулирования небольшой, до n кр.

Для изменения напряжения применяют трехфазные автотрансформаторы и тиристорные регуляторы напряжения.

Схема замкнутой системы регулирования скорости тиристорный регулятор напряжения - асинхронный двигатель (ТРН - АД)

Рис. 4. Схема замкнутой системы регулирования скорости тиристорный регулятор напряжения — асинхронный двигатель (ТРН — АД)

Замкнутая схема управления асинхронным двигателем , выполненным по схеме тиристорный регулятор напряжения — электродвигатель позволяет регулировать скорость асинхронного двигателя с повышенным скольжением (такие двигатели применяются в вентиляционных установках).

Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряжения

Так как частота вращения магнитного поля статора n о = 60 f /р, то регулирование частоты вращения асинхронного двигателя можно производить изменением частоты питающего напряжения.

Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряженияПринцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту питающего напряжения, можно в соответствии с выражением при неизменном числе пар полюсов р изменять угловую скорость n о магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Для получения высоких энергетических показателей асинхронных двигателей (коэффициентов мощности, полезного действия, перегрузочной способности) необходимо одновременно с частотой изменять и подводимое напряжение. Закон изменения напряжения зависит от характера момента нагрузки Мс. При постоянном моменте нагрузки напряжение на статоре должно регулироваться пропорционально частоте.

Схема частотного электропривода приведена на рис. 5, а механические характеристики АД при частотном регулировании — на рис. 6.

Схема частотного электропривода

Рис. 5. Схема частотного электропривода

Механические характеристики асинхронного двигателя при частотном регулировании

Рис. 6. Механические характеристики асинхронного двигателя при частотном регулировании

С уменьшением частоты f критический момент несколько уменьшается в области малых частот вращения. Это объясняется возрастанием влияния активного сопротивления обмотки статора при одновременном снижении частоты и напряжения.

Частотное регулирование скорости асинхронного двигателя позволяет изменять частоту вращения в диапазоне (20 — 30) : 1. Частотный способ является наиболее перспективным для регулирования асинхронного двигателя с короткозамкнутым ротором. Потери мощности при таком регулировании невелики, поскольку минимальны потери скольжения.

частотные преобразователиБольшинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Читайте так же:
Как отрегулировать карбюратор к65д юпитер 5

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.

Силовой трехфазный импульсный инвертор содержит шесть транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями. Регулирование выходной частоты I вых и выходного напряжения осуществляется за счет высокочастотной широтно-импульсной модуляции.

Регулирование частоты вращения асинхронного двигателя переключение числа пар полюсов

Ступенчатое регулирование скорости можно осуществить, используя специальные многоскоростные асинхронные двигатели с короткозамкнутым ротором.

Из выражения n о = 60 f /р следует, что при изменении числа пар полюсов р получаются механические характеристики с разной частотой вращения n о магнитного поля статора. Так как значение р определяется целыми числами, то переход от одной характеристики к другой в процессе регулирования носит ступенчатый характер.

Существует два способа изменения числа пар полюсов. В первом случае в пазы статора укладывают две обмотки с разным числом полюсов. При изменении скорости к сети подключается одна из обмоток. Во втором случае обмотку каждой фазы составляют из двух частей, которые соединяют параллельно или последовательно. При этом число пар полюсов изменяется в два раза.

Схемы переключения обмоток асинхронного двигателя: а - с одинарной звезды на двойную; б - с треугольника на двойную звезду

Рис. 7. Схемы переключения обмоток асинхронного двигателя: а — с одинарной звезды на двойную; б — с треугольника на двойную звезду

Регулирование скорости путем изменения числа пар полюсов экономично, а механические характеристики сохраняют жесткость. Недостатком этого способа является ступенчатый характер изменения частоты вращения асинхронного двигателя с короткозамкнутым ротором. Выпускаются двухскоростные двигатели с числом полюсов 4/2, 8/4, 12/6. Четырехскоростной электродвигатель с полюсами 12/8/6/4 имеет две переключаемые обмотки.

Использованы материалы книги Дайнеко В.А., Ковалинский А.И. Электрооборудование сельскохозяйственных предприятий.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Регулировка вращения и реверс мотора от стиральной машины

Сейчас мы рассмотрим как управлять вращением мотора стиральной машины, скоростью и направлением. Этот материал является продолжением темы подключения моторов от СМА, поднятой по многочисленным просьбам посетителей сайта 2 Схемы.

Сразу заметим, что это коллекторный двигатель, для которого не нужен пусковой конденсатор. Этот двигатель, как правило, оснащен тахометром, который являясь частью обратной связи стабилизирует частоту вращения. Без него мотор может чрезмерно увеличить обороты, вплоть до отказа двигателя. Электродвигатели этого типа быстродействующие, могут выдавать даже несколько тысяч оборотов в минуту, что может быть помехой в некоторых устройствах.

Прежде всего по наклейке на корпусе двигателя необходимо прочитать, какая мощность у него. В качестве альтернативы проверьте ваттметром, вставленным в розетку электросети, чтобы узнать сколько энергии потребляет мотор. Эти типы двигателей обычно потребляют несколько сотен ватт мощности. В разных источниках указано энергопотребление от 120 до 360 Вт.

Регулировка вращения и реверс мотора от стиральной машины

Двигатель имеет две скорости вращения. На холостом ходу (на стирке) мотор потребляет мощность 40 Вт. Вторая скорость вращения, при которой двигатель потребляет 300 Вт мощности (при отжиме). Эти скорости изменяются соответствующим переключением обмоток на статоре двигателя. Во время отжима обороты двигателя могут составлять даже несколько тысяч об/мин.

Подключение двигателя от СМА к сети 220 В

Регулировка вращения и реверс мотора от стиральной машины

При подключении коллекторного двигателя к сети, один конец щетки и провода обмотки подключаем вместе (или ставим перемычку на контактную колодку), другой конец проводов подключаем к сети 220 В.

Регулировка вращения и реверс мотора от стиральной машины

Направление вращения мотора будет зависеть от коммутации проводов обмотки, подключенных к 220 В. Если нужно изменить направление движения мотора — установите перемычку на другую пару проводов, или задействуйте двухсекционный переключатель, как показано на схеме.

Регулировка вращения и реверс мотора от стиральной машины

Схема простого регулятора скорости мотора

Конечно скорость лучше всего контролируется инвертором, но для несложных любительских устройств должно быть достаточно простых самодельных регуляторов.

Регулировка вращения и реверс мотора от стиральной машины

Минимальные обороты получились с этой схемой 200 об / мин. С2 это плавный старт. Плавный пуск работает отлично на холостом ходу, хотя с нагрузкой на вал, при необходимости, подберите R5 = 0 — 3 кОм в зависимости от нагрузки; R6 = 18 — 51 Ом в зависимости от симистора; R4 = 3 — 10 кОм — это защита Т3; RR1 = 2 -10 кОм — регулятор скорости связан с сетью гальванически, требуется защита от сетевого напряжения. Есть потенциометры с пластиковой осью, желательно использовать именно их.

Читайте так же:
Как отрегулировать ручной тормоз на джили мк кросс

Китайские модули регуляторов оборотов

На сайтах магазинов по электронике есть готовые регуляторы оборотов, например вот такой:

Регулировка вращения и реверс мотора от стиральной машины

Контроллер скорости 400 Вт, 50/60 Гц, 220 В переменного тока. Цена примерно 1000 руб.

Регулировка вращения и реверс мотора от стиральной машины

В этом контроллере используется инверторная схема, то есть широкий диапазон регулирования скорости. Подходит для двигателя переменного тока 220 В 50/60 Гц. Диапазон регулирования скорости составляет 90-1400 об / мин 50 Гц, 90-1700 об / мин 60 Гц. Способ подключения:

Регулировка вращения и реверс мотора от стиральной машины

Красный — это основной провод двигателя, желтый провод — заземления. Просто подключите блок согласно электросхеме и убедитесь в правильности.

  • Установите скорость на минимальное значение «0», чтобы избежать внезапного сильного старта и повреждения при включении питания.
  • Затем включите питание и установите регулятор скорости в желаемое положение.
  • Чтобы изменить направление вращения двигателя, поменяйте местами соединительные провода «CCW» и «CW» на задней панели контроллера.
  • Выберите комбинацию COM и CW, тогда двигатель будет вращаться по часовой стрелке.
  • Выберите комбинацию COM и CCW, тогда двигатель будет вращаться против часовой стрелки (при изменении направления не переключайте, пока двигатель не остановится полностью).

Регулировка вращения и реверс мотора от стиральной машины

В общем варианты есть разные, и задействовав такой модуль можно на базе мотора от стиралки сделать действительно неплохое и полезное устройство, например шлифовальный станок для мастерской.

Настройки для регуляторов оборотов BLHeli_32

В этой статье мы рассмотрим настройки в конфигураторе BLHeli_32 , с которыми у вашего квадрокоптера повысится производительность.

Blheli_32

  • PWM Frequency (частота PWM): 48KHz (макс)
  • Motor Timing: Auto
  • Протокол регуляторов оборотов: DShot1200 и Multishot

Обратите внимание, эти настройки актуальны только для регуляторов оборотов (ESC) BLHeli_32. С другими регуляторами не даются никакие гарантии.

Значение частоты PWM по умолчанию в BLHeli_32 установлено на 24KHz, при этом, если поднять частоту до 48KHz, то можно заметно повысить производительность полета на большинстве сборок.

При увеличении частоты, двигатели начинают работать более плавно, а также создают меньше шума. Некоторые пилоты утверждают, что моторы меньше греются, а аккумулятора хватает на более долгое время полета за счет бОльшей эффективности. Настройка заключается в том, насколько быстро будут переключаться MOSFET’ы в регуляторах оборотов, по простому — насколько быстро будут переключаться ключи. Подробнее о том, как работают регуляторы и что такое MOSFET:

Эти настройки никак не связаны с настройками полетного контроллера, все равно нужно настраивать сами регуляторы.

Motor Timing

Значение по умолчанию Motor Timing в BLHeli_32 равно 16. Это значение вполне подходит для большинства сборок, но мы предлагаем установить Motor Timing на «Auto», чтобы дать регуляторам возможность самим регулировать этот параметр при большом газе. Тем не менее, мы не заметили особой разницы между auto и 16, хотя может просто потратили мало времени на тестирование.

В любом случае, советуем вам попробовать поставить «Auto» и посмотреть на результат.

Протокол регуляторов оборотов

DShot — это один из новейших и современных протоколов для регуляторов оборотов, который пришел на замену Multishot. Но споры, что лучше — Multishot или DShot между пилотами все еще продолжаются и можно до сих пор встретить утверждения, что Мультишот лучше Дшот.

Несмотря на дебаты, DShot все же работает более интенсивно с процессором, чем Мультишот. По этой причине, некоторые остаются на Multishot, чтобы оставалась возможность использовать 32K/32K гироскопа, при этом сохраняя нагрузку на процессор на разумном уровне.

Наш совет — экспериментируйте!

В пользу DShot мы приведем несколько фактов:

  • не нужно беспокоиться о калибровке регуляторов оборотов;
  • для использования телеметрии регуляторов, необходим DShot;
  • частоты 8К/8К вполне достаточно;
  • нет никакой заметной разницы в воздухе между DShot и Multishot;
  • возможность использования сигнальных огней на регуляторах.

Demag Compensation

Этот параметр может помочь уменьшить вероятность рассинхронизации. Если у вас нет этой проблемы, то оставьте значение по умолчанию, если проблема есть, то значение следует увеличить. Стоит уточнить, что если у вас нет проблем, а вы все равно увеличите значение — ничего не поменяется.

Читайте так же:
Однофазный асинхронный двигатель с плавной регулировкой

Rampup Power

Параметр Rampup Power (ударная мощность) ограничивает изменение мощности при внезапном увеличении газа.

Снижение Rampup Power уменьшает резкое увеличение тока, возникающее при резком увеличении газа. Недостатком будет то, что если вы установите параметр слишком низко, то это может привести к замедлению реакции двигателей.

Значение по умолчанию — хорошее значение. Я думаю, что параметр можно уменьшить, если у вас установлены специфические регуляторы оборотов и вы хотите защитить их от резких пиковых токов, которые могут возникнуть, если во время полета вы дадите полный газ и они от этого могут сгореть.

Current Protection

Этот параметр регулирует максимальный ток, который может пройти через регулятор оборотов.

Защита от высокого тока похожа на параметр Rampup Power, но этот параметр позволяет более точно контролировать ток.

Если вы не знаете, зачем вам этот параметр, то оставьте его выключенным (по умолчанию он выключен). Этот параметр можно использовать для защиты от потенциальной опасности для регуляторов оборотов: от перегорания из-за пиковых нагрузок, сбоев и рассинхронизации. Но если текущая мощность ваших регуляторов соответствует мощности моторов, вам не о чем беспокоиться.

Остальные параметры и настройки

Если для гоночного квадрокоптера, то оставьте остальные настройки и параметры по умолчанию. Многие из этих настроек предназначены для монокрыльев и самолетов.

Регуляторы оборотов с поддержанием мощности в двигателях

Регулятор оборотов с поддержанием мощности

Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель. В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет. Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

Виды двигателей и принцип работы

Регулятор оборотов коллекторного двигателя 220в своими руками

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер. Его мощность значительно выше, чем у асинхронного, а цена довольно низкая. Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост. Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно. Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

Схема регулятора оборотов коллекторного двигателя 220в

Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

Регулятор оборотов с поддержанием мощности схема

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.
Читайте так же:
Потенциометр для регулировки оборотов вентилятора

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Схема регулятора оборотов двигателя постоянного тока 12в

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

Регуляторы мощности постоянного тока

Иногда возникает потребность в регулировке оборотов коллекторного двигателя постоянного тока.

Регулятор оборотов электродвигателя 12в своими руками

Если потребитель не имеет большой мощности, то возможно последовательно подсоединить переменный резистор, но тогда КПД такого регулятора резко упадет. Существуют схемы, при помощи которых возможно довольно плавно регулировать обороты, не уменьшая КПД. Такой регулятор подойдет для изменения яркости различных ламп, напряжения питания, не превышающего 12 В. Эта схема также выполняет роль стабилизатора частоты вращения, при изменении механической нагрузки на вал обороты остаются неизменными.

Эта схема регулятора оборотов двигателя постоянного тока 12 В вполне подойдет для регулировки и стабилизации оборотов двигателей с током, не превышающим 5 А. В эту схему входит драйвер на биполярных транзисторах и таймер 7555, что обеспечивает стабильную работу и плавную скорость регулировки. Цена на детали довольно низкая, а это является несомненным плюсом. Можно также собрать регулятор оборотов электродвигателя 12 В своими руками.

Асинхронный двигатель и регулятор оборотов

Схема регулировки оборотов двигателя постоянного тока 12в

Как правило, этот тип применяется на различных производствах, начиная от шахт и заканчивая металлообрабатывающими отраслями. Например, в угольных шахтах для плавного пуска конвейерных лент используется пускатель АПМ, в который встроено устройство на тиристорах, позволяющее плавно запустить конвейер. Асинхронный однофазный двигатель применяется также в автомобилях, вентиляторах печек, двигателях, которые приводят в движение дворники, бытовых вентиляторах, питающихся от напряжения 220 В. В машине двигатели работают от постоянного напряжения 12 вольт, но плавный запуск в них не предусмотрен.

Для регулировки оборотов асинхронного двигателя применяются так называемые частотные преобразователи. Эти преобразователи позволяют кардинально менять форму и частоту сигнала. Как правило, такие преобразователи собраны на базе мощных полупроводниковых транзисторов и импульсных модуляторов, а всеми элементами управляет ШИМ-контроллер.

Следует помнить: чем плавней разгон двигателя, тем меньше он испытывает перегрузок. Это касается редукторов, конвейеров, мощных насосов, лифтов. Вот одна схема регулятора оборотов асинхронного двигателя 220 В.

С помощью этой схемы можно регулировать обороты двигателей, мощность которых не превышает 1 тыс. Вт. При сборке этой схемы есть нюансы, которые необходимо учесть:

Регуляторы оборотов с поддержанием мощности в двигателях

  • Тип соединения «треугольник».
  • Необходим драйвер трехфазного моста IR2133.
  • Микроконтроллер AT90SPWM3B.
  • Для прошивки микроконтроллера необходим программатор.
  • Мощные транзисторы IRG4BC30W или их аналоги.
  • ЖК-дисплей в качестве индикатора.
  • Импульсный блок питания, который можно купить или собрать собственноручно.

Из-за значительного нагрева диодный мост и силовые транзисторы необходимо установить на радиатор. Если предполагается подключение двигателя мощностью до 400 Вт, то термодатчик ставить необязательно, а для управления можно использовать опторазвязку.

Чтобы увеличить срок службы различных видов двигателей, рекомендуется пользоваться регуляторами оборотов, решающими большое количество проблем.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector